login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372386
Decimal expansion of Sum_{k>=0} (k^2+1) / (k^4+1).
1
2, 7, 0, 7, 0, 0, 5, 5, 0, 4, 3, 9, 1, 4, 4, 6, 9, 2, 3, 7, 3, 0, 0, 8, 0, 8, 2, 6, 9, 9, 5, 4, 4, 7, 6, 6, 8, 7, 3, 3, 0, 9, 9, 0, 1, 5, 7, 1, 9, 9, 7, 3, 1, 6, 2, 5, 4, 4, 1, 2, 0, 5, 8, 8, 0, 4, 9, 9, 3, 4, 0, 3, 6, 6, 5, 2, 2, 2, 2, 4, 6, 0, 0, 4, 2, 3
OFFSET
1,1
FORMULA
Equals 1/2 - Pi*sinh(sqrt(2)*Pi)/(sqrt(2)*(cos(sqrt(2)*Pi) - cosh(sqrt(2)*Pi))). - Vaclav Kotesovec, May 14 2024
EXAMPLE
2.70700550439144692373008082699544766873309901571997...
MATHEMATICA
s = Sum[ (k^2 + 1)/(k^4 + 1), {k, 0, Infinity}]
d = Chop[N[s, 100]]
First[RealDigits[d]]
RealDigits[1/2 - Pi*Sinh[Sqrt[2]*Pi]/(Sqrt[2]*(Cos[Sqrt[2]*Pi] - Cosh[Sqrt[2]*Pi])), 10, 120][[1]] (* Vaclav Kotesovec, May 14 2024 *)
CROSSREFS
Cf. A372387.
Sequence in context: A021791 A378715 A325905 * A199273 A196833 A245224
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, May 12 2024
STATUS
approved