login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224825
Expansion of psi(x) * psi(x^3)^2 in powers of x where psi() is a Ramanujan theta function.
2
1, 1, 0, 3, 2, 0, 4, 1, 0, 5, 3, 0, 5, 4, 0, 5, 1, 0, 7, 5, 0, 7, 4, 0, 9, 0, 0, 7, 6, 0, 6, 6, 0, 11, 3, 0, 8, 5, 0, 10, 6, 0, 8, 2, 0, 9, 6, 0, 14, 8, 0, 10, 0, 0, 15, 7, 0, 7, 8, 0, 7, 4, 0, 14, 9, 0, 14, 6, 0, 16, 1, 0, 8, 11, 0, 13, 10, 0, 13, 0, 0, 12
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-7/8) * eta(q^2)^2 * eta(q^6)^4 / (eta(q) * eta(q^3)^2) in powers of q.
Euler transform of period 6 sequence [1, -1, 3, -1, 1, -3, ...].
G.f.: (Sum_{k>0} x^(k*(k-1)/2)) * (Sum_{k>0} x^(3 * k*(k-1)/2))^2.
a(3*n + 2) = 0. a(n) = A033768(3*n + 1). a(3*n + 1) = A224823(n).
EXAMPLE
G.f. = 1 + x + 3*x^3 + 2*x^4 + 4*x^6 + x^7 + 5*x^9 + 3*x^10 + 5*x^12 + 4*x^13 + ...
G.f. = q^7 + q^15 + 3*q^31 + 2*q^39 + 4*q^55 + q^63 + 5*q^79 + 3*q^87 + 5*q^103 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(1/2)] EllipticTheta[ 2, 0, q^(3/2)]^2 / (8 q^(7/8)), {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^6 + A)^4 / (eta(x + A) * eta(x^3 + A)^2), n))};
CROSSREFS
Sequence in context: A005874 A275622 A129239 * A341413 A290794 A328178
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 20 2013
STATUS
approved