login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327083
Array read by descending antidiagonals: A(n,k) is the number of oriented colorings of the edges of a regular n-dimensional simplex using up to k colors.
13
1, 2, 1, 3, 4, 1, 4, 11, 12, 1, 5, 24, 87, 40, 1, 6, 45, 416, 1197, 184, 1, 7, 76, 1475, 18592, 42660, 1296, 1, 8, 119, 4236, 166885, 3017600, 4223313, 17072, 1, 9, 176, 10437, 1019880, 85025050, 1748176768, 1139277096, 424992
OFFSET
1,2
COMMENTS
An n-dimensional simplex has n+1 vertices and (n+1)*n/2 edges. For n=1, the figure is a line segment with one edge. For n-2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with six edges. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two.
A(n,k) is also the number of oriented colorings of (n-2)-dimensional regular simplices in an n-dimensional simplex using up to k colors. Thus, A(2,k) is also the number of oriented colorings of the vertices (0-dimensional simplices) of an equilateral triangle.
LINKS
Robert A. Russell, Table of n, a(n) for n = 1..325 First 25 antidiagonals.
E. M. Palmer and R. W. Robinson, Enumeration under two representations of the wreath product, Acta Math., 131 (1973), 123-143.
FORMULA
The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition.
A(n,k) = Sum_{j=1..(n+1)*n/2} A327087(n,j) * binomial(k,j).
A(n,k) = A327084(n,k) + A327085(n,k) = 2*A327084(n,k) - A327086(n,k) = 2*A327085(n,k) + A327086(n,k).
EXAMPLE
Array begins with A(1,1):
1 2 3 4 5 6 7 8 9 10 ...
1 4 11 24 45 76 119 176 249 340 ...
1 12 87 416 1475 4236 10437 22912 45981 85900 ...
1 40 1197 18592 166885 1019880 4738153 17962624 58248153 166920040 ...
...
For A(2,3) = 11, the nine achiral colorings are AAA, AAB, AAC, ABB, ACC, BBB, BBC, BCC, and CCC. The chiral pair is ABC-ACB.
MATHEMATICA
CycleX[{2}] = {{1, 1}}; (* cycle index for permutation with given cycle structure *)
CycleX[{n_Integer}] := CycleX[n] = If[EvenQ[n], {{n/2, 1}, {n, (n-2)/2}}, {{n, (n-1)/2}}]
compress[x : {{_, _} ...}] := (s = Sort[x]; For[i=Length[s], i>1, i-=1, If[s[[i, 1]] == s[[i-1, 1]], s[[i-1, 2]]+=s[[i, 2]]; s=Delete[s, i], Null]]; s)
CycleX[p_List] := CycleX[p] = compress[Join[CycleX[Drop[p, -1]], If[Last[p] > 1, CycleX[{Last[p]}], ## &[]], If[# == Last[p], {#, Last[p]}, {LCM[#, Last[p]], GCD[#, Last[p]]}] & /@ Drop[p, -1]]]
pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (*partition count*)
row[n_Integer] := row[n] = Factor[Total[If[EvenQ[Total[1-Mod[#, 2]]], pc[#] j^Total[CycleX[#]][[2]], 0] & /@ IntegerPartitions[n+1]]/((n+1)!/2)]
array[n_, k_] := row[n] /. j -> k
Table[array[n, d-n+1], {d, 1, 10}, {n, 1, d}] // Flatten
(* Using Fripertinger's exponent per Andrew Howroyd's code in A063841: *)
pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))]
ex[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, i-1}] + Total[Quotient[v, 2]]
array[n_, k_] := Total[If[EvenQ[Total[1-Mod[#, 2]]], pc[#]k^ex[#], 0] &/@ IntegerPartitions[n+1]]/((n+1)!/2)
Table[array[n, d-n+1], {d, 10}, {n, d}] // Flatten
CROSSREFS
Cf. A327084 (unoriented), A327085 (chiral), A327086 (achiral), A327087 (exactly k colors), A324999 (vertices, facets), A337883 (faces, peaks), A337407 (orthotope edges, orthoplex ridges), A337411 (orthoplex edges, orthotope ridges).
Rows 1-4 are A000027, A006527, A046023, A331350.
Column 2 is A218144(n+1).
Sequence in context: A137649 A180915 A240783 * A104002 A073135 A063804
KEYWORD
nonn,tabl
AUTHOR
Robert A. Russell, Aug 19 2019
STATUS
approved