login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046023
Number of ways to color edges of a tetrahedron using <= n colors.
8
0, 1, 12, 87, 416, 1475, 4236, 10437, 22912, 45981, 85900, 151371, 254112, 409487, 637196, 962025, 1414656, 2032537, 2860812, 3953311, 5373600, 7196091, 9507212, 12406637, 16008576, 20443125, 25857676, 32418387, 40311712
OFFSET
0,3
FORMULA
a(n) = (n^6+3*n^4+8*n^2)/12.
G.f.: x*(1+x)*(1+4*x+20*x^2+4*x^3+x^4)/(1-x)^7. - Colin Barker, Jan 30 2012
E.g.f.: exp(x)*x*(12 + 60*x + 108*x^2 + 68*x^3 + 15*x^4 + x^5)/12. - Stefano Spezia, Feb 29 2024
MAPLE
A046023 := n->(n^6+3*n^4+8*n^2)/12;
MATHEMATICA
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 1, 12, 87, 416, 1475, 4236}, 30] (* Vincenzo Librandi, Jan 31 2012 *)
PROG
(PARI) a(n)=(n^6+3*n^4+8*n^2)/12 \\ Charles R Greathouse IV, Jan 31 2012
CROSSREFS
Cf. A006008.
Row 3 of A327083.
Sequence in context: A283119 A091119 A243248 * A369421 A183721 A180797
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 11 2001
STATUS
approved