login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327085 Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the edges of a regular n-dimensional simplex using up to k colors. 13
0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 4, 21, 6, 0, 0, 10, 140, 405, 28, 0, 0, 20, 575, 7904, 17154, 252, 0, 0, 35, 1785, 76880, 1415648, 1920375, 4726, 0, 0, 56, 4606, 486522, 41453650, 855834880, 547375212, 150324, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,12

COMMENTS

An n-dimensional simplex has n+1 vertices and (n+1)*n/2 edges. For n=1, the figure is a line segment with one edge. For n-2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with six edges. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. The chiral colorings of its edges come in pairs, each the reflection of the other.

A(n,k) is also the number of chiral pairs of colorings of (n-2)-dimensional regular simplices in an n-dimensional simplex using up to k colors. Thus, A(2,k) also counts the number of chiral pairs of colorings of the vertices (0-dimensional simplices) of an equilateral triangle.

LINKS

Robert A. Russell, Table of n, a(n) for n = 1..325 First 25 antidiagonals.

Harald Fripertinger, The cycle type of the induced action on 2-subsets

E. M. Palmer and R. W. Robinson, Enumeration under two representations of the wreath product, Acta Math., 131 (1973), 123-143.

FORMULA

The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition.

A(n,k) = Sum_{j=1..(n+1)*n/2} A327089(n,j) * binomial(k,j).

A(n,k) = A327083(n,k) - A327084(n,k) = (A327083(n,k) - A327086(n,k)) / 2 = A327084(n,k) - A327086(n,k).

EXAMPLE

Array begins with A(1,1):

  0 0   0    0     0      0       0       0        0        0         0 ...

  0 0   1    4    10     20      35      56       84      120       165 ...

  0 1  21  140   575   1785    4606   10416    21330    40425     71995 ...

  0 6 405 7904 76880 486522 2300305 8806336 28725192 82626270 214744629 ...

  ...

For A(2,3) = 1, the chiral pair is ABC-ACB.

MATHEMATICA

CycleX[{2}] = {{1, 1}}; (* cycle index for permutation with given cycle structure *)

CycleX[{n_Integer}] := CycleX[n] = If[EvenQ[n], {{n/2, 1}, {n, (n-2)/2}}, {{n, (n-1)/2}}]

compress[x : {{_, _} ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]] == s[[i-1, 1]], s[[i-1, 2]] += s[[i, 2]]; s = Delete[s, i], Null]]; s)

CycleX[p_List] := CycleX[p] = compress[Join[CycleX[Drop[p, -1]], If[Last[p] > 1, CycleX[{Last[p]}], ## &[]], If[# == Last[p], {#, Last[p]}, {LCM[#, Last[p]], GCD[#, Last[p]]}] & /@ Drop[p, -1]]]

pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)

row[n_Integer] := row[n] = Factor[Total[If[EvenQ[Total[1-Mod[#, 2]]], 1, -1] pc[#] j^Total[CycleX[#]][[2]] & /@ IntegerPartitions[n+1]]/(n+1)!]

array[n_, k_] := row[n] /. j -> k

Table[array[n, d-n+1], {d, 1, 10}, {n, 1, d}] // Flatten

(* Using Fripertinger's exponent per Andrew Howroyd's code in A063841: *)

pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))]

ex[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, i-1}] + Total[Quotient[v, 2]]

array[n_, k_] := Total[If[EvenQ[Total[1-Mod[#, 2]]], 1, -1] pc[#]k^ex[#] &/@ IntegerPartitions[n+1]]/(n+1)!

Table[array[n, d-n+1], {d, 10}, {n, d}] // Flatten

CROSSREFS

Cf. A327083 (oriented), A327084 (unoriented), A327086 (achiral), A327089 (exactly k colors), A325000(n,k-n) (vertices, facets), A337885 (faces, peaks), A337409 (orthotope edges, orthoplex ridges), A337413 (orthoplex edges, orthotope ridges).

Rows 1-4 are A000004, A000292(n-2), A337899, A331352.

Sequence in context: A103896 A244955 A272969 * A083192 A225540 A128452

Adjacent sequences:  A327082 A327083 A327084 * A327086 A327087 A327088

KEYWORD

nonn,tabl

AUTHOR

Robert A. Russell, Aug 19 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 10:40 EST 2021. Contains 341631 sequences. (Running on oeis4.)