OFFSET
0,3
COMMENTS
Given a transformation t from the transformation semigroup Tn and a positive integer i, the largest whole number s such that there does not exist an i such that t^s = t^(s+i) under transformation composition with t is the stem length. Terms in t^(s+i) form a cycle under repeated composition with t and do not return to transformations contained in the stem. Permutations by definition have stem length 0.
LINKS
Chad Brewbaker, Table of n, a(n) for n = 0..46
EXAMPLE
Triangle begins:
1;
1;
4;
21, 6;
148, 84, 24;
1305, 1160, 540, 120;
13806, 17610, 10560, 3960, 720;
170401, 296772, 214410, 104160, 32760, 5040;
...
MATHEMATICA
nn = 10; Map[Select[#, # > 0 &] &, Table[Range[0, nn]! CoefficientList[ Series[Prepend[Exp[Log[1/(1 - NestList[x Exp[#] &, x Exp[x], nn])]], 0][[k + 1]] - Prepend[Exp[Log[1/(1 - NestList[x Exp[#] &, x Exp[x], nn])]], 0][[k]], {x, 0, nn}], x], {k, 1, nn - 1}] // Transpose] // Grid (* Geoffrey Critzer, Feb 13 2022 *)
PROG
(Ruby) # needs version 1.9+
counting_numbers = Enumerator.new do |yielder|
(0..1.0/0).each do |number|
yielder.yield number
end
end
def trans_mult(transa, transb)
trans_ret = Array.new
0.upto(transa.length-1) do |index|
trans_ret.push(transa[transb[index]])
end
return trans_ret
end
def lolipop(trans)
trans_hash ={}
trans_hash[trans.clone] =0
index = 1
trans_current = trans_mult(trans, trans)
while trans_hash[trans_current] == nil
trans_hash[trans_current.clone] = index
index = index +1
trans_current = trans_mult(trans_current, trans)
end
cycle_length =trans_hash.size - trans_hash[trans_current]
return [trans_hash.size, cycle_length]
end
1.upto(10) do |index|
tran_size =index
histo_hash = {}
counting_numbers.take(tran_size).repeated_permutation(tran_size).each { |x|
size, cycle_length = lolipop(x)
#tail_length = size-cycle_length
if (histo_hash[size-cycle_length] == nil)
histo_hash[size-cycle_length] =1
else
histo_hash[size-cycle_length] = histo_hash[size-cycle_length]+1
end
}
puts "#{tran_size}|" + histo_hash.inspect
end
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Chad Brewbaker, May 14 2013
STATUS
approved