login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225538
Let r(n) denote the reverse of n. For every n, consider the sequence n_1 = n + 1 + r(n+1), and for m >= 2, n_m = n_(m-1) + 1 + r(n_(m-1) + 1). a(n) is the least m for which n_m is a palindrome, or 0 if there is no such m.
1
1, 1, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 4, 1, 1, 1, 1, 2, 1, 2, 2, 4, 7, 1, 1, 1, 2, 1, 2, 2, 4, 7, 10, 1, 1, 2, 1, 2, 2, 4, 7
OFFSET
0,5
COMMENTS
Conjecture: the least n's for which a(n) = 0 are 1895, 1985, 2894, 2984, 3893, and 3983. - Peter J. C. Moses, May 10 2013
See analogous numbers in A023108 for which the so-called Lychrel process "Reverse and Add!", apparently, never leads to a palindrome.
LINKS
EXAMPLE
For n=8, 9 + 9 = 18, 19 + 91 = 110, 111 + 111 = 222 is a palindrome. Thus a(8)=3.
CROSSREFS
Cf. A023108.
Sequence in context: A343121 A090872 A283472 * A212355 A238646 A194330
KEYWORD
nonn,base
AUTHOR
Vladimir Shevelev, May 10 2013
STATUS
approved