

A225538


Let r(n) denote the reverse of n. For every n, consider the sequence n_1 = n + 1 + r(n+1), and for m >= 2, n_m = n_(m1) + 1 + r(n_(m1) + 1). a(n) is the least m for which n_m is a palindrome, or 0 if there is no such m.


1



1, 1, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 4, 1, 1, 1, 1, 2, 1, 2, 2, 4, 7, 1, 1, 1, 2, 1, 2, 2, 4, 7, 10, 1, 1, 2, 1, 2, 2, 4, 7
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

Conjecture: the least n's for which a(n) = 0 are 1895, 1985, 2894, 2984, 3893, and 3983.  Peter J. C. Moses, May 10 2013
See analogous numbers in A023108 for which the socalled Lychrel process "Reverse and Add!", apparently, never leads to a palindrome.


LINKS

Peter J. C. Moses, Table of n, a(n) for n = 0..5000


EXAMPLE

For n=8, 9 + 9 = 18, 19 + 91 = 110, 111 + 111 = 222 is a palindrome. Thus a(8)=3.


CROSSREFS

Cf. A023108.
Sequence in context: A343121 A090872 A283472 * A212355 A238646 A194330
Adjacent sequences: A225535 A225536 A225537 * A225539 A225540 A225541


KEYWORD

nonn,base


AUTHOR

Vladimir Shevelev, May 10 2013


STATUS

approved



