login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023108
Positive integers which apparently never result in a palindrome under repeated applications of the function A056964(x) = x + (x with digits reversed).
71
196, 295, 394, 493, 592, 689, 691, 788, 790, 879, 887, 978, 986, 1495, 1497, 1585, 1587, 1675, 1677, 1765, 1767, 1855, 1857, 1945, 1947, 1997, 2494, 2496, 2584, 2586, 2674, 2676, 2764, 2766, 2854, 2856, 2944, 2946, 2996, 3493, 3495, 3583, 3585, 3673, 3675
OFFSET
1,1
COMMENTS
196 is conjectured to be smallest initial term which does not lead to a palindrome. John Walker, Tim Irvin and others have extended this to millions of digits without finding one (see A006960).
Also called Lychrel numbers, though the definition of "Lychrel number" varies: Purists only call the "seeds" or "root numbers" Lychrel; the "related" or "extra" numbers (arising in the former's orbit) have been coined "Kin numbers" by Koji Yamashita. There are only 2 "root" Lychrels below 1000 and 3 more below 10000, cf. A088753. - M. F. Hasler, Dec 04 2007
Question: when do numbers in this sequence start to outnumber numbers that are not in the sequence? - J. Lowell, May 15 2014
Answer: according to Doucette's site, 10-digit numbers have 49.61% of Lychrels. So beyond 10 digits, Lychrels start to outnumber non-Lychrels. - Dmitry Kamenetsky, Oct 12 2015
From the current definition it is unclear whether palindromes are excluded from this sequence, cf. A088753 vs A063048. 9999 would be the first palindromic term that will never result in a palindrome when the Reverse-then-add function A056964 is repeatedly applied. - M. F. Hasler, Apr 13 2019
REFERENCES
Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, 702 pages. See Entry 196.
LINKS
A.H.M. Smeets, Table of n, a(n) for n = 1..20000 (tested for 200 iterations; first 249 terms from William Boyles)
DeCode, Lychrel Number, dCode.fr 'toolkit' to solve games, riddles, geocaches, 2020.
Jason Doucette, World Records
Martianus Frederic Ezerman, Bertrand Meyer and Patrick Sole, On Polynomial Pairs of Integers, arXiv:1210.7593 [math.NT], 2012-2014.
Patrick De Geest, Some thematic websources
James Grime and Brady Haran, What's special about 196?, Numberphile video (2015).
Fred Gruenberger, How to handle numbers with thousands of digits, and why one might want to, Computer Recreations, Scientific American, 250 (No. 4, 1984), 19-26.
R. K. Guy, What's left?, Math Horizons, Vol. 5, No. 4 (April 1998), pp. 5-7.
Niphawan Phoopha and Prapanpong Pongsriiam, Notes on 1089 and a Variation of the Kaprekar Operator, Int'l J. Math. Comp. Sci. (2021) Vol. 16, No. 4, 1599-1606.
Wade VanLandingham, 196 and other Lychrel numbers
Wade VanLandingham, Largest known Lychrel number
Eric Weisstein's World of Mathematics, 196 Algorithm.
Eric Weisstein's World of Mathematics, Palindromic Number Conjecture
Eric Weisstein's World of Mathematics, Lychrel Number
EXAMPLE
From M. F. Hasler, Feb 16 2020: (Start)
Under the "add reverse" operation, we have:
196 (+ 691) -> 887 (+ 788) -> 1675 (+ 5761) -> 7436 (+ 6347) -> 13783 (+ 38731) -> etc. which apparently never leads to a palindrome.
Similar for 295 (+ 592) -> 887, 394 (+ 493) -> 887, 790 (+ 097) -> 887 and 689 (+ 986) -> 1675, which all merge immediately into the above sequence, and also for the reverse of any of the numbers occurring in these sequences: 493, 592, 691, 788, ...
879 (+ 978) -> 1857 -> 9438 -> 17787 -> 96558 is the only other "root" Lychrel below 1000 which yields a sequence distinct from that of 196. (End)
MATHEMATICA
With[{lim = 10^3}, Select[Range@ 4000, Length@ NestWhileList[# + IntegerReverse@ # &, #, ! PalindromeQ@ # &, 1, lim] == lim + 1 &]] (* Michael De Vlieger, Dec 23 2017 *)
PROG
(PARI) select( {is_A023108(n, L=exponent(n+1)*5)=while(L--&& n*2!=n+=A004086(n), ); !L}, [1..3999]) \\ with {A004086(n)=fromdigits(Vecrev(digits(n)))}; default value for search limit L chosen according to known records A065199 and indices A065198. - M. F. Hasler, Apr 13 2019, edited Feb 16 2020
CROSSREFS
Cf. A056964 ("reverse and add" operation on which this is based).
Sequence in context: A224667 A118781 A119667 * A092231 A188247 A211851
KEYWORD
nonn,base,nice
EXTENSIONS
Edited by M. F. Hasler, Dec 04 2007
STATUS
approved