OFFSET
1,1
COMMENTS
Semiprime analog of A117330 Determinants of 3 X 3 matrices of continuous blocks of 9 consecutive primes. The terminology "continuous" is used to distinguish from "discrete" which would be (in this 3 X 3 semiprime case) block 1: 4, 6, 9, 10, 14, 15, 21, 22, 25; block 2: 26, 33, 34, 35, 38, 39, 46, 49, 51; and so forth.
FORMULA
a(n) = s(n)*s(n+4)*s(n+8) - s(n)*s(n+5)*s(n+7) - s(n+1)*s(n+3)*s(n+8) + s(n+1)*s(n+5)*s(n+6) + s(n+2)*s(n+3)*s(n+7) - s(n+2)*s(n+4)*s(n+6) where s(n) = A001358(n) is the n-th semiprime.
EXAMPLE
a(1) = -196 because the determinant of the first continuous block of 9 semiprimes is:
| 4. 6. 9.|
|10. 14. 15.|
|21. 22. 25.|.
a(9) = 958 because the determinant of the 9th continuous block of 9 semiprimes is:
|25. 26. 33.|
|34. 35. 38.|
|39. 46. 49.|.
a(50) = 3428 because the determinant of the 50th continuous block of 9 semiprimes is:
|146. 155. 158.|
|159. 161. 166.|
|169. 177. 178.|.
MAPLE
A118781 := proc(n)
local A, i, r, c ;
A := Matrix(3, 3) ;
i := n ;
for r from 1 to 3 do
for c from 1 to 3 do
A[r, c] := A001358(i) ;
i := i+1 ;
end do:
end do:
LinearAlgebra[Determinant](A) ;
end proc: # R. J. Mathar, May 05 2013
MATHEMATICA
Det/@(Partition[#, 3]&/@(Partition[Select[Range[200], PrimeOmega[ #] == 2&], 9, 1])) (* Harvey P. Dale, Nov 29 2015 *)
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Jonathan Vos Post, May 22 2006
STATUS
approved