|
|
A118713
|
|
a(n) = determinant of n X n circulant matrix whose first row is A001358(1), A001358(2), ..., A001358(n) where A001358(n) = n-th semiprime.
|
|
8
|
|
|
4, -20, 361, -3567, 218053, -3455872, 736439027, -16245418225, 1519211613654, -37662452460912, 20199655476042865, -643524421698841536, 46513669467992431114, -3754367220494585505280, 277686193779526116536293, -123973821931125256333959105, 20103033234038999233385180658
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Semiprime analog of A066933 Circulant of prime numbers. a(n) alternates in sign. A048954 Wendt determinant of n-th circulant matrix C(n). A052182 Circulant of natural numbers. A086459 Circulant of powers of 2.
|
|
LINKS
|
Table of n, a(n) for n=1..17.
Eric Weisstein's World of Mathematics, Circulant Matrix.
|
|
EXAMPLE
|
a(2) = -20 = determinant
|4,6|
|6,4|.
a(3) = 361 = 19^2 = determinant
|4,6,9|
|9,4,6|
|6,9,4|.
|
|
MAPLE
|
A118713 := proc(n)
local C, r, c ;
C := Matrix(1..n, 1..n) ;
for r from 1 to n do
for c from 1 to n do
C[r, c] := A001358(1+((c-r) mod n)) ;
end do:
end do:
LinearAlgebra[Determinant](C) ;
end proc:
seq(A118713(n), n=1..13) ;
|
|
MATHEMATICA
|
nmax = 13;
sp = Select[Range[3 nmax], PrimeOmega[#] == 2&];
a[n_] := Module[{M}, M[1] = sp[[1 ;; n]];
M[k_] := M[k] = RotateRight[M[k - 1]];
Det[Table[M[k], {k, 1, n}]]];
Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Feb 16 2023 *)
|
|
CROSSREFS
|
Cf. A001358, A048954, A052182, A066933, A086459, A086569.
Sequence in context: A167002 A227005 A054465 * A303630 A257547 A160703
Adjacent sequences: A118710 A118711 A118712 * A118714 A118715 A118716
|
|
KEYWORD
|
easy,sign
|
|
AUTHOR
|
Jonathan Vos Post, May 20 2006
|
|
EXTENSIONS
|
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Aug 23 2007
|
|
STATUS
|
approved
|
|
|
|