login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167002
G.f.: A(x) = Sum_{n>=0} 2^n*log(G(2^n*x))^n/n! where G(x) = g.f. of A167000.
2
1, 4, 20, 320, 21064, 5030400, 4056470528, 10872157339648, 98162974155542592, 3052890463194814939136, 334052589949087491382968320, 130858881562759880830581892710400
OFFSET
0,2
COMMENTS
The g.f. of A167000, G(x), satisfies:
Sum_{n>=0} log(G(2^n*x))^n/n! = 1 + Sum_{n>=0} 2^(2^n-n)*x^(2^n).
FORMULA
a(n) = [x^n] G(x)^(2^(n+1)) for n>=0 where G(x) = g.f. of A167000.
EXAMPLE
G.f.: A(x) = 1 + 4*x + 20*x^2 + 320*x^3 + 21064*x^4 + 5030400*x^5 +...
Let G(x) equal the g.f. of A167000:
G(x) = 1 + x - x^2 - 16*x^4 - 1767*x^5 - 493164*x^6 - 422963721*x^7 +...
then the g.f. A(x) of this sequence equals the series:
A(x) = 1 + 2*log(G(2x)) + 4*log(G(4x))^2/2! + 8*log(G(8x))^3/3! + 16*log(G(16x))^4/4! +...
ILLUSTRATE (2^n)-th POWERS OF G.F. G(x) OF A167000.
The coefficients in the expansion of G(x)^(2^n), n>=0, begin:
G^1: [1,1,-1,0,-16,-1767,-493164,-422963721,-1130568823448,...];
G^2: [(1),2,-1,-2,-31,-3566,-989830,-846910236,...];
G^4: [1,(4),2,-8,-69,-7252,-1993858,-1697772536,...];
G^8: [1,8,(20),0,-198,-15088,-4045944,-3411523840,...];
G^16: [1,16,104,(320),4,-33344,-8341216,-6888386304,...];
G^32: [1,32,464,3968,(21064),0,-17646208,-14050624512,...];
G^64: [1,64,1952,37632,511376,(5030400),0,-29063442432,...];
G^128: [1,128,8000,325120,9649952,222432256,(4056470528),0,...]; ...
where the coefficients along the diagonal (shown in parenthesis) form the initial terms of this sequence.
PROG
(PARI) {a(n)=local(A=[1, 4], B=[1, 2], G=[1, 1]); for(i=1, n, G=concat(G, 0); B=Vec(sum(m=0, #G, log(subst(Ser(G), x, 2^m*x))^m/m!)); G[ #G]=-floor(B[ #G]/2^(#G-1))); A=Vec(sum(m=0, #G, 2^m*log(subst(Ser(G), x, 2^m*x))^m/m!)); A[n+1]}
CROSSREFS
Sequence in context: A012797 A342907 A358544 * A227005 A054465 A118713
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 14 2009
STATUS
approved