login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167003
G.f. A(x) satisfies: Sum_{n>=0} log(A(3^n*x))^n/n! = 1 + Sum_{n>=0} 3^(3^n-n)*x^(3^n).
3
1, 1, -4, -4, -8220, -16910960, -220513689396, -19336259194582782, -12353453824556774353132, -60817754630605750994570243653, -2385117541132316928253481462547625452
OFFSET
0,3
FORMULA
The coefficient of x^(3^n) in A(x)^(3^(3^n)) equals 3^(3^n-n):
[x^(3^n)] A(x)^(3^(3^n)) = 3^(3^n-n); while
[x^n] A(x)^(3^n) = 0 when n>0 is not a power of 3, with A(0)=1.
EXAMPLE
G.f.: A(x) = 1 + x - 4*x^2 - 4*x^3 - 8220*x^4 - 16910960*x^5 +...
log(A(x)) = x - 9*x^2/2 + x^3/3 - 32913*x^4/4 - 84513699*x^5/5 +...
ILLUSTRATE THE SERIES DEFINITION:
1 + log(A(3x)) + log(A(9x))^2/2! + log(A(27x))^3/3! + log(A(81x))^4/4! +...
= 1 + 3*x + 9*x^3 + 2187*x^9 + 282429536481*x^27 +...
= 1 + 3^(1-0)*x + 3^(3-1)*x^3 + 3^(9-2)*x^9 + 3^(27-3)*x^27 +...
ILLUSTRATE (3^n)-th POWERS OF G.F. A(x).
The coefficients in the expansion of A(x)^(3^n) for n>=0 begin:
n=0: [(1), 1, -4, -4, -8220, -16910960, -220513689396,...];
n=1: [1, (3), -9, -35, -24648, -50782068, -661642361248,...];
n=2: [1, 9, (0), -240, -74574, -152788194, -1985840486856,...];
n=3: [1, 27, 243, (9), -236682, -462449898, -5965789971726,...];
n=4: [1, 81, 2916, 59076, (0), -1420876404, -17973134801100,...];
n=5: [1, 243, 28431, 2125845, 111615732, (0), -54490964413644,...];
n=6: [1, 729, 262440, 62178840, 10895760846, 1491228760410, (0),...];
where the coefficients along the diagonal (in parenthesis) begin:
[1,3,0,9,0,0,0,0,0,2187,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 282429536481,...]
and equal 3^(3^m-m) at positions n=3^m for m>=0, with zeros elsewhere (except for the initial '1').
PROG
(PARI) {a(n)=local(A=[1, 1], B=[1, 3]); for(i=1, n, A=concat(A, 0); B=Vec(sum(m=0, #A, log(subst(Ser(A), x, 3^m*x))^m/m!)); A[ #A]=-floor(B[ #A]/3^(#A-1))); A[n+1]}
CROSSREFS
Cf. A167004, A167005, variant: A167000.
Sequence in context: A358199 A024247 A067445 * A335762 A254294 A143574
KEYWORD
sign
AUTHOR
Paul D. Hanna, Nov 14 2009
STATUS
approved