login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A143574
Sum of all distinct squares occurring when partitioning n into two squares.
5
0, 1, 1, 0, 4, 5, 0, 0, 4, 9, 10, 0, 0, 13, 0, 0, 16, 17, 9, 0, 20, 0, 0, 0, 0, 50, 26, 0, 0, 29, 0, 0, 16, 0, 34, 0, 36, 37, 0, 0, 40, 41, 0, 0, 0, 45, 0, 0, 0, 49, 75, 0, 52, 53, 0, 0, 0, 0, 58, 0, 0, 61, 0, 0, 64, 130, 0, 0, 68, 0, 0, 0, 36, 73, 74, 0, 0, 0, 0, 0, 80, 81, 82, 0, 0, 170, 0, 0, 0
OFFSET
0,5
COMMENTS
For n > 0: a(n) = 0 iff A000161(n) = 0: a(A022544(n)) = 0;
A143575 gives numbers m such that a(m) = m.
LINKS
FORMULA
a(n) = Sum_{k=1..n} k*A010052(k)*A010052(n-k). [Reinhard Zumkeller, Sep 27 2008]
EXAMPLE
A000161(25)=#{5^2+0^2,4^2+3^2}=2: a(25)=25+0+16+9=50;
A000161(26)=#{5^2+1^2}=1: a(16)=25+1=26;
A000161(49)=#{7^2+0^2}=1: a(49)=49+0=49;
A000161(50)=#{7^2+1^2,5^2+5^2}=2: a(50)=49+1+25=75;
A000161(2600)=#{50^2+10^2,46^2+22^2,38^2+34^2}=3: a(2600)=2500+100+2116+484+1444+1156=7800;
A000161(2601)=#{51^2+0^2,45^2+24^2}=2: a(2601)=2601+0+12025+576=5202;
A000161(2602)=#{51^2+1^2}=1: a(2602)=2601+1=2602.
PROG
(Python)
from sympy import divisors
from sympy.solvers.diophantine.diophantine import cornacchia
def A143574(n):
c = 0
for d in divisors(n):
if (k:=d**2)>n:
break
q, r = divmod(n, k)
if not r:
c += sum(k*(a[0]**2+(a[1]**2 if a[0]!=a[1] else 0)) for a in cornacchia(1, 1, q) or [])
return c # Chai Wah Wu, May 15 2023
(PARI) a(n) = sum(k=1, n, if (issquare(k) && issquare(n-k), k)); \\ Michel Marcus, May 16 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 24 2008
STATUS
approved