login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143572
E.g.f. satisfies A(x) = exp(x*A(x^8/8!)).
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 91, 496, 1981, 6436, 18019, 45046, 102961, 328186, 4375801, 56951038, 500352841, 3276290746, 17289324361, 77309034166, 302908144177, 1104328093276, 7519851360451, 134741602227376, 2095457847783301, 23492070829121896
OFFSET
0,10
LINKS
FORMULA
a(0) = 1; a(n) = (n-1)! * Sum_{k=0..floor((n-1)/8)} (8*k+1) * a(k) * a(n-1-8*k) / (40320^k * k! * (n-1-8*k)!). - Seiichi Manyama, Nov 29 2023
MAPLE
A:= proc(n) option remember; if n<=0 then 1 else unapply (convert (series (exp (x*A(n-8)(x^8/40320)), x, n+1), polynom), x) fi end: a:= n-> coeff (A(n)(x), x, n)*n!: seq(a(n), n=0..35);
MATHEMATICA
A[n_] := A[n] = If[n <= 0, 1&, Function[Normal[Series[Exp[y*A[n-2][y^8/8!]], {y, 0, n+1}] /. y -> #]]]; a[n_] := Coefficient[A[n][x], x, n]*n!; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 13 2014, after Maple *)
CROSSREFS
8th column of A143565.
Sequence in context: A175710 A226389 A119047 * A365305 A244203 A002739
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 24 2008
STATUS
approved