login
A002739
a(n) = ((2*n-1)!/(2*n!*(n-2)!))*((n^3-3*n^2+2*n+2)/(n^2-1)).
(Formerly M4732 N2024)
2
1, 10, 91, 651, 4026, 22737, 120835, 615043, 3031678, 14578928, 68747966, 319075550, 1461581460, 6621579135, 29718121635, 132302508195, 584868588150, 2569600678260, 11227927978410, 48822435838410, 211370463290220, 911509393468050, 3916793943349326, 16776146058210126, 71641860657928876
OFFSET
2,2
COMMENTS
The former name was "Coefficients for extrapolation".
REFERENCES
J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages)
FORMULA
a(n) ~ 2^(2*n-5)*(8*n-33)*sqrt(n/Pi). - Peter Luschny, Jan 18 2020
From G. C. Greubel, Mar 23 2022: (Start)
a(n) = (1/4)*(n^3 - 3*n^2 + 2*n + 2)*A000108(n).
G.f.: (1 -9*x +21*x^2 +2*x^3)/(2*x*(1-4*x)^(5/2)) - (1 +x +x^2)/(2*x). (End)
MAPLE
t4 := n-> ((2*n-1)! /(2*n!*(n-2)!))*((n^3-3*n^2+2*n+2)/(n^2-1));
[seq(t4(n), n=2..40)];
MATHEMATICA
Table[(n^3-3*n^2+2*n+2)*CatalanNumber[n]/4, {n, 2, 30}]
PROG
(Magma) [(n^3 -3*n^2 +2*n +2)*Catalan(n)/4: n in [2..30]]; // G. C. Greubel, Mar 23 2022
(Sage) [(n^3 -3*n^2 +2*n +2)*catalan_number(n)/4 for n in (2..30)] # G. C. Greubel, Mar 23 2022
CROSSREFS
A diagonal of A331432.
Sequence in context: A143572 A365305 A244203 * A344389 A079928 A346230
KEYWORD
nonn
EXTENSIONS
Entry revised by N. J. A. Sloane, Jan 18 2020
STATUS
approved