|
|
A002737
|
|
a(n) = Sum_{j=0..n} (n+j)*binomial(n+j,j).
(Formerly M3975 N1644)
|
|
2
|
|
|
0, 5, 35, 189, 924, 4290, 19305, 85085, 369512, 1587222, 6760390, 28601650, 120349800, 504131940, 2103781365, 8751023325, 36300541200, 150217371150, 620309379690, 2556724903590, 10520494818600, 43225511319900, 177361820257050, 726860987017074, 2975511197688624, 12168371410300700
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The former title was "Coefficients for extrapolation".
|
|
REFERENCES
|
J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (n*(2*n + 3)*binomial(2*n + 1, n + 1))/(n + 2). - Peter Luschny, Jan 18 2020
E.g.f.: exp(2*x) * ((1 - 3*x + 8*x^2) * BesselI(1,2*x) / x - (1 - 8*x) * BesselI(0,2*x)). - Ilya Gutkovskiy, Nov 03 2021
G.f.: ((1-3*x -4*x^2)*sqrt(1-4*x) -(1-5*x))/(2*x^2*(1-4*x)^(3/2)). - G. C. Greubel, Mar 23 2022
|
|
MAPLE
|
t5 := n-> add(binomial(n+j, j)*(n+j), j=0..n); [seq(t5(n), n=0..40)];
# Alternative:
A002737 := n -> (n*(2*n + 3)*binomial(2*n+1, n+1))/(n + 2):
|
|
MATHEMATICA
|
Table[n(2n+3)Binomial[2n+1, n+1]/(n+2), {n, 0, 25}] (* Vincenzo Librandi, Jan 19 2020 *)
|
|
PROG
|
(Magma) [(n*(2*n+3)*Binomial(2*n+1, n+1))/(n+2): n in [0..30]]; // Vincenzo Librandi, Jan 19 2020
(SageMath) [n*(n+3)*catalan_number(n+2)/4 for n in (0..30)] # G. C. Greubel, Mar 23 2022
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|