login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165755
a(n) = (5-3*5^n)/2.
2
1, -5, -35, -185, -935, -4685, -23435, -117185, -585935, -2929685, -14648435, -73242185, -366210935, -1831054685, -9155273435, -45776367185, -228881835935, -1144409179685, -5722045898435, -28610229492185
OFFSET
0,2
FORMULA
a(n) = 5*a(n-1) - 10, a(0)=1.
a(n) = 6*a(n-1)-5*a(n-2), a(0)= 1, a(1)= -5, for n>1.
G.f.: (1-11x)/(1-6x+5x^2).
a(n) = Sum_{0<=k<=n} A112555(n,k)*(-6)^(n-k).
a(n) = (-5)*A057651(n-1).
E.g.f.: (1/2)*(5*exp(x) - 3*exp(5*x)). - G. C. Greubel, Apr 07 2016
MATHEMATICA
(5-3*5^Range[0, 20])/2 (* or *) LinearRecurrence[{6, -5}, {1, -5}, 20] (* Harvey P. Dale, Apr 18 2013 *)
PROG
(PARI) x='x+O('x^99); Vec((1-11*x)/(1-6*x+5*x^2)) \\ Altug Alkan, Apr 07 2016
CROSSREFS
Sequence in context: A359520 A376496 A043014 * A166149 A002737 A241779
KEYWORD
easy,sign
AUTHOR
Philippe Deléham, Sep 26 2009
STATUS
approved