The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A166149 a(n) = (5^n + 10*(-6)^n)/11. 5
 1, -5, 35, -185, 1235, -6785, 43835, -247385, 1562435, -8983985, 55857035, -325376585, 2001087635, -11762385185, 71795014235, -424666569785, 2578516996835, -15318514090385, 92674023995435, -552229446706985 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From Klaus Brockhaus, Oct 14 2009: (Start) Fourth binomial transform of A014992. Sixth binomial transform is A001020 preceded by 1. Lim_{n -> infinity} a(n)/a(n-1) = -6. (End) LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (-1,30). FORMULA a(n) = 30*a(n-2)-a(n-1), a(0)= 1, a(1)= -5. G.f.: (1-4x)/(1+x-30*x^2). a(n) = Sum_{k=0..n} A112555(n,k)*(-6)^k. E.g.f.: (1/11)*(exp(5*x) + 10*exp(-6*x)). - G. C. Greubel, May 01 2016 MATHEMATICA CoefficientList[Series[(1-4x)/(1+x-30x^2), {x, 0, 40}], x]  (* Harvey P. Dale, Mar 11 2011 *) LinearRecurrence[{-1, 30}, {1, -5}, 20] (* Harvey P. Dale, Jan 20 2022 *) PROG (MAGMA) [(5^n+10*(-6)^n)/11: n in [0..30]]; // Vincenzo Librandi, May 02 2011 (PARI) a(n)=(5^n+10*(-6)^n)/11 \\ Charles R Greathouse IV, May 02 2016 CROSSREFS Cf. A166035, A166036. Cf. A014992 (q-integers for q=-10), A001020 (powers of 11). Sequence in context: A329762 A043014 A165755 * A002737 A241779 A265976 Adjacent sequences:  A166146 A166147 A166148 * A166150 A166151 A166152 KEYWORD easy,sign AUTHOR Philippe Deléham, Oct 08 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 17:59 EDT 2022. Contains 356189 sequences. (Running on oeis4.)