login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166147
a(n) = 4*n^2 + 4*n - 7.
6
1, 17, 41, 73, 113, 161, 217, 281, 353, 433, 521, 617, 721, 833, 953, 1081, 1217, 1361, 1513, 1673, 1841, 2017, 2201, 2393, 2593, 2801, 3017, 3241, 3473, 3713, 3961, 4217, 4481, 4753, 5033, 5321, 5617, 5921, 6233, 6553, 6881, 7217, 7561, 7913, 8273, 8641
OFFSET
1,2
COMMENTS
Primes in the sequence are in A028886. - Bruno Berselli, Mar 16 2012
The number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 643", based on the 5-celled von Neumann neighborhood. - Robert Price, May 19 2016
a(n) = y - x for any primitive Pythagorean triangle (x^2 + y^2 = z^2), where z - x = 8. Also, a(n+2) = y + x, and y = 8n + 12. - Boyd Blundell, Jul 31 2021
REFERENCES
Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
a(n) = a(n-1)+8*n with n>1, a(1)=1.
From Vincenzo Librandi, Mar 15 2012: (Start)
G.f.: x*(1+14*x-7*x^2)/(1-x)^3.
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). (End)
E.g.f.: (-7 + 8*x + 4*x^2)*exp(x) + 7. - G. C. Greubel, Apr 26 2016
Sum_{n>=1} 1/a(n) = 1/7 + (Pi/(8*sqrt(2)))*tan(sqrt(2)*Pi). - Amiram Eldar, Feb 20 2023
MATHEMATICA
CoefficientList[Series[(1+14x-7x^2)/(1-x)^3, {x, 0, 50}], x] (* or *) LinearRecurrence[{3, -3, 1}, {1, 17, 41}, 50] (* Vincenzo Librandi, Mar 15 2012 *)
Table[4 n^2 + 4 n - 7, {n, 46}] (* Michael De Vlieger, Apr 27 2016 *)
PROG
(PARI) a(n)=8*binomial(n+1, 2)-7 \\ Charles R Greathouse IV, Jan 11 2012
(Magma) I:=[1, 17, 41]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 15 2012
CROSSREFS
Cf. A028886.
Sequence in context: A163185 A138005 A267421 * A028886 A146443 A110226
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Oct 08 2009
EXTENSIONS
New name from Charles R Greathouse IV, Jan 11 2012
STATUS
approved