The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A166144 a(n) = (11*n^2 + 11*n - 20)/2. 2
 1, 23, 56, 100, 155, 221, 298, 386, 485, 595, 716, 848, 991, 1145, 1310, 1486, 1673, 1871, 2080, 2300, 2531, 2773, 3026, 3290, 3565, 3851, 4148, 4456, 4775, 5105, 5446, 5798, 6161, 6535, 6920, 7316, 7723, 8141, 8570, 9010, 9461, 9923, 10396, 10880 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = a(n-1) + 11*n, a(1)=1, with n>1. From Vincenzo Librandi, Mar 15 2012: (Start) G.f.: x*(1+20*x-10*x^2)/(1-x)^3. a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). (End) E.g.f.: (1/2)*(-20 + 22*x + 11*x^2)*exp(x). - G. C. Greubel, Apr 26 2016 Sum_{n>=1} 1/a(n) = 1/10 + (2*Pi/sqrt(1001))*tan(sqrt(91/11)*Pi/2). - Amiram Eldar, Feb 20 2023 MATHEMATICA CoefficientList[Series[(1+20x-10x^2)/(1-x)^3, {x, 0, 50}], x] (* or *) LinearRecurrence[{3, -3, 1}, {1, 23, 56}, 50] (* Vincenzo Librandi, Mar 15 2012 *) Table[(11 n^2 + 11 n - 20)/2, {n, 44}] (* Michael De Vlieger, Apr 27 2016 *) PROG (PARI) a(n)=11*binomial(n+1, 2)-10 \\ Charles R Greathouse IV, Jan 11 2012 (Magma) I:=[1, 23, 56]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 15 2012 CROSSREFS Sequence in context: A264117 A033657 A305283 * A007795 A153353 A039346 Adjacent sequences: A166141 A166142 A166143 * A166145 A166146 A166147 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Oct 16 2009 EXTENSIONS New name from Charles R Greathouse IV, Jan 11 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 23 21:46 EDT 2024. Contains 374575 sequences. (Running on oeis4.)