|
|
A166150
|
|
a(n) = 5*n^2 + 5*n - 9.
|
|
2
|
|
|
1, 21, 51, 91, 141, 201, 271, 351, 441, 541, 651, 771, 901, 1041, 1191, 1351, 1521, 1701, 1891, 2091, 2301, 2521, 2751, 2991, 3241, 3501, 3771, 4051, 4341, 4641, 4951, 5271, 5601, 5941, 6291, 6651, 7021, 7401, 7791, 8191, 8601, 9021, 9451, 9891, 10341
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
a(n) = a(n-1) + 10*n (with a(1)=1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (5*x^2 + 10*x - 9)*exp(x) + 9. (End)
Sum_{n>=1} 1/a(n) = 1/9 + (Pi/sqrt(205))*tan(sqrt(41/5)*Pi/2). - Amiram Eldar, Feb 20 2023
|
|
MAPLE
|
|
|
MATHEMATICA
|
Table[(5 n^2 + 5 n - 9), {n, 50}] (* or *) CoefficientList[Series[(1 + 18 x - 9 x^2)/(1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Sep 13 2013 *)
LinearRecurrence[{3, -3, 1}, {1, 21, 51}, 50] (* G. C. Greubel, May 01 2016 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|