login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165752
a(n) = (8-5*4^n)/3.
2
1, -4, -24, -104, -424, -1704, -6824, -27304, -109224, -436904, -1747624, -6990504, -27962024, -111848104, -447392424, -1789569704, -7158278824, -28633115304, -114532461224, -458129844904, -1832519379624, -7330077518504
OFFSET
0,2
FORMULA
a(n) = 4*a(n-1) - 8, a(0)=1.
a(n) = 5*a(n-1) - 4*a(n-2), a(0)=1, a(1)=-4, for n>1.
G.f.: (1-9x)/(1-5x+4x^2).
a(n) = Sum_{0<=k<=n} A112555(n,k)*(-5)^(n-k).
a(n) = (-4)*A020989(n-1).
E.g.f.: (1/3)*(8*exp(x) - 5*exp(4*x)). - G. C. Greubel, Apr 07 2016
MATHEMATICA
(8-5*4^Range[0, 30])/3 (* or *) LinearRecurrence[{5, -4}, {1, -4}, 30] (* Harvey P. Dale, Jan 10 2016 *)
PROG
(PARI) x='x+O('x^99); Vec((1-9*x)/(1-5*x+4*x^2)) \\ Altug Alkan, Apr 07 2016
CROSSREFS
Sequence in context: A355798 A368815 A006736 * A366603 A166036 A120908
KEYWORD
easy,sign
AUTHOR
Philippe Deléham, Sep 26 2009
STATUS
approved