login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{j=0..n} (n+j)*binomial(n+j,j).
(Formerly M3975 N1644)
2

%I M3975 N1644 #47 Mar 20 2024 15:40:24

%S 0,5,35,189,924,4290,19305,85085,369512,1587222,6760390,28601650,

%T 120349800,504131940,2103781365,8751023325,36300541200,150217371150,

%U 620309379690,2556724903590,10520494818600,43225511319900,177361820257050,726860987017074,2975511197688624,12168371410300700

%N a(n) = Sum_{j=0..n} (n+j)*binomial(n+j,j).

%C The former title was "Coefficients for extrapolation".

%D J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H G. C. Greubel, <a href="/A002737/b002737.txt">Table of n, a(n) for n = 0..1000</a>

%H J. Ser, <a href="/A002720/a002720_4.pdf">Les Calculs Formels des Séries de Factorielles</a>, Gauthier-Villars, Paris, 1933 [Local copy].

%H J. Ser, <a href="/A002720/a002720.pdf">Les Calculs Formels des Séries de Factorielles</a> (Annotated scans of some selected pages)

%F a(n) = Sum_{j=0..n} binomial(n+j,j)*(n+j). - _Zerinvary Lajos_, Aug 30 2006

%F a(n) = n*binomial(2*n+4, n+2)/4. - _Zerinvary Lajos_, Feb 28 2007

%F These 2 formulas are correct - see A331432. - _N. J. A. Sloane_, Jan 17 2020

%F a(n) = (n*(2*n + 3)*binomial(2*n + 1, n + 1))/(n + 2). - _Peter Luschny_, Jan 18 2020

%F E.g.f.: exp(2*x) * ((1 - 3*x + 8*x^2) * BesselI(1,2*x) / x - (1 - 8*x) * BesselI(0,2*x)). - _Ilya Gutkovskiy_, Nov 03 2021

%F G.f.: ((1-3*x -4*x^2)*sqrt(1-4*x) -(1-5*x))/(2*x^2*(1-4*x)^(3/2)). - _G. C. Greubel_, Mar 23 2022

%p t5 := n-> add(binomial(n+j,j)*(n+j),j=0..n); [seq(t5(n),n=0..40)];

%p # Alternative:

%p A002737 := n -> (n*(2*n + 3)*binomial(2*n+1, n+1))/(n + 2):

%p seq(A002737(n), n=0..25); # _Peter Luschny_, Jan 18 2020

%t Table[n(2n+3)Binomial[2n+1, n+1]/(n+2), {n, 0, 25}] (* _Vincenzo Librandi_, Jan 19 2020 *)

%o (Magma) [(n*(2*n+3)*Binomial(2*n+1, n+1))/(n+2): n in [0..30]]; // _Vincenzo Librandi_, Jan 19 2020

%o (SageMath) [n*(n+3)*catalan_number(n+2)/4 for n in (0..30)] # _G. C. Greubel_, Mar 23 2022

%Y A diagonal of A331432.

%Y Cf. A000108.

%K nonn

%O 0,2

%A _N. J. A. Sloane_

%E Entry revised by _N. J. A. Sloane_, Jan 18 2020