login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167001
Least possible nonnegative coefficients of x^n in G(x)^(2^n), n>=0, for an integer series G(x) such that G'(0)=G(0)=1; the G(x) that satisfies this condition equals the g.f. of A167000.
3
1, 2, 2, 0, 4, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 4096, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 134217728, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 288230376151711744, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,2
FORMULA
G.f.: A(x) = 1 + Sum_{n>=0} 2^(2^n-n)*x^(2^n).
G.f.: A(x) = Sum_{n>=0} log(G(2^n*x))^n/n! where G(x) = g.f. of A167000.
a(n) = [x^n] G(x)^(2^n) for n>=0 where G(x) = g.f. of A167000.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 2*x^2 + 4*x^4 + 32*x^8 + 4096*x^16 + 134217728*x^32 +...
A(x) = 1 + 2^(1-0)*x + 2^(2-1)*x^2 + 2^(4-2)*x^4 + 2^(8-3)*x^8 + 2^(16-4)*x^16 +...
Let G(x) equal the g.f. of A167000:
G(x) = 1 + x - x^2 - 16*x^4 - 1767*x^5 - 493164*x^6 - 422963721*x^7 +...
then the g.f. A(x) of this sequence equals the series:
A(x) = 1 + log(G(2x)) + log(G(4x))^2/2! + log(G(8x))^3/3! + log(G(16x))^4/4! +...
ILLUSTRATE (2^n)-th POWERS OF G.F. G(x) OF A167000.
The coefficients in the expansion of G(x)^(2^n), n>=0, begin:
G^1: [(1),1,-1,0,-16,-1767,-493164,-422963721,-1130568823448,...];
G^2: [1,(2),-1,-2,-31,-3566,-989830,-846910236,...];
G^4: [1,4,(2),-8,-69,-7252,-1993858,-1697772536,...];
G^8: [1,8,20,(0),-198,-15088,-4045944,-3411523840,...];
G^16: [1,16,104,320,(4),-33344,-8341216,-6888386304,...];
G^32: [1,32,464,3968,21064,(0),-17646208,-14050624512,...];
G^64: [1,64,1952,37632,511376,5030400,(0),-29063442432,...];
G^128: [1,128,8000,325120,9649952,222432256,4056470528,(0),...]; ...
where the coefficients along the diagonal (shown in parenthesis) form the initial terms of this sequence and equal 2^(2^m-m) at positions n=2^m for m>=0, with zeros elsewhere (except for the initial '1').
PROG
(PARI) {a(n)=if(n==0, 1, if(n==2^valuation(n, 2), 2^(n-valuation(n, 2)), 0))}
(PARI) /* A(x) = Sum_{n>=0} log(G(2^n*x))^n/n!, G(x) = g.f. of A167000: */ {a(n)=local(A=[1, 2], G=[1, 1]); for(i=1, n, G=concat(G, 0); A=Vec(sum(m=0, #G, log(subst(Ser(G), x, 2^m*x))^m/m!)); G[ #G]=-floor(A[ #G]/2^(#G-1))); A[n+1]}
CROSSREFS
Cf. A167000, A167002, variant: A167004.
Sequence in context: A363907 A342987 A090657 * A108563 A378982 A138476
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 14 2009
STATUS
approved