login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: Sum_{n>=0} log(A(3^n*x))^n/n! = 1 + Sum_{n>=0} 3^(3^n-n)*x^(3^n).
3

%I #2 Mar 30 2012 18:37:20

%S 1,1,-4,-4,-8220,-16910960,-220513689396,-19336259194582782,

%T -12353453824556774353132,-60817754630605750994570243653,

%U -2385117541132316928253481462547625452

%N G.f. A(x) satisfies: Sum_{n>=0} log(A(3^n*x))^n/n! = 1 + Sum_{n>=0} 3^(3^n-n)*x^(3^n).

%F The coefficient of x^(3^n) in A(x)^(3^(3^n)) equals 3^(3^n-n):

%F [x^(3^n)] A(x)^(3^(3^n)) = 3^(3^n-n); while

%F [x^n] A(x)^(3^n) = 0 when n>0 is not a power of 3, with A(0)=1.

%e G.f.: A(x) = 1 + x - 4*x^2 - 4*x^3 - 8220*x^4 - 16910960*x^5 +...

%e log(A(x)) = x - 9*x^2/2 + x^3/3 - 32913*x^4/4 - 84513699*x^5/5 +...

%e ILLUSTRATE THE SERIES DEFINITION:

%e 1 + log(A(3x)) + log(A(9x))^2/2! + log(A(27x))^3/3! + log(A(81x))^4/4! +...

%e = 1 + 3*x + 9*x^3 + 2187*x^9 + 282429536481*x^27 +...

%e = 1 + 3^(1-0)*x + 3^(3-1)*x^3 + 3^(9-2)*x^9 + 3^(27-3)*x^27 +...

%e ILLUSTRATE (3^n)-th POWERS OF G.F. A(x).

%e The coefficients in the expansion of A(x)^(3^n) for n>=0 begin:

%e n=0: [(1), 1, -4, -4, -8220, -16910960, -220513689396,...];

%e n=1: [1, (3), -9, -35, -24648, -50782068, -661642361248,...];

%e n=2: [1, 9, (0), -240, -74574, -152788194, -1985840486856,...];

%e n=3: [1, 27, 243, (9), -236682, -462449898, -5965789971726,...];

%e n=4: [1, 81, 2916, 59076, (0), -1420876404, -17973134801100,...];

%e n=5: [1, 243, 28431, 2125845, 111615732, (0), -54490964413644,...];

%e n=6: [1, 729, 262440, 62178840, 10895760846, 1491228760410, (0),...];

%e where the coefficients along the diagonal (in parenthesis) begin:

%e [1,3,0,9,0,0,0,0,0,2187,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 282429536481,...]

%e and equal 3^(3^m-m) at positions n=3^m for m>=0, with zeros elsewhere (except for the initial '1').

%o (PARI) {a(n)=local(A=[1,1],B=[1,3]);for(i=1,n,A=concat(A,0); B=Vec(sum(m=0,#A,log(subst(Ser(A),x,3^m*x))^m/m!)); A[ #A]=-floor(B[ #A]/3^(#A-1)));A[n+1]}

%Y Cf. A167004, A167005, variant: A167000.

%K sign

%O 0,3

%A _Paul D. Hanna_, Nov 14 2009