login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118779
Determinant of n X n matrix containing the first n^2 4-almost primes in increasing order.
3
16, -224, 0, 182016, 12734992, -80430368, -125120640, 1334967760, 1060202222660, -2759409121760, 54820105989504, -14148083510835712, 49989643415528010, 299304923505836144, 1713123391839442498, 93227182153040103540, -86403659709730762670
OFFSET
1,1
COMMENTS
4-almost prime analog of A067276 Determinant of n X n matrix containing the first n^2 primes in increasing order. The first column contains the first n 4-almost primes (A014613) in increasing order, the second column contains the next n 4-almost primes in increasing order, etc. Equivalently, first row contains first n 4-almost primes in increasing order, second row contains next n 4-almost primes in increasing order, etc. See also: A118713 a(n) = semiprime circulant.
EXAMPLE
a(2) = -224 because of the determinant -224 =
|16, 24|
|36, 40|.
a(3) = 0 because this matrix is singular: 0 =
|16, 24, 36|
|40, 54, 56|
|60, 81, 84|.
a(6) = -80430368 because of the determinant -80430368 =
| 16, 24, 36, 40, 54, 56|
| 60, 81, 84, 88, 90, 100|
| 104, 126, 132, 135, 136, 140|
| 150, 152, 156, 184, 189, 196|
| 198, 204, 210, 220, 225, 228|
| 232, 234, 248, 250, 260, 276|.
a(8) = 1334967760 =
| 16, 24, 36, 40, 54, 56, 60, 81|
| 84, 88, 90, 100, 104, 126, 132, 135|
|136, 140, 150, 152, 156, 184, 189, 196|
|198, 204, 210, 220, 225, 228, 232, 234|
|248, 250, 260, 276, 294, 296, 297, 306|
|308, 315, 328, 330, 340, 342, 344, 348|
|350, 351, 364, 372, 375, 376, 380, 390|
|414, 424, 441, 444, 459, 460, 462, 472|.
MATHEMATICA
FourAlmostPrimePi[n_] := Sum[PrimePi[n/(Prime@i*Prime@j*Prime@k)] - k + 1, {i, PrimePi[n^(1/4)]}, {j, i, PrimePi[(n/Prime@i)^(1/3)]}, {k, j, PrimePi@Sqrt[n/(Prime@i*Prime@j)]}]; FourAlmostPrime[n_] := Block[{e = Floor[Log[2, n] + 1], a, b}, a = 2^e; Do[b = 2^p; While[FourAlmostPrimePi[a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[Det[Partition[Array[FourAlmostPrime, n^2], n]], {n, 17}] (* Robert G. Wilson v, May 26 2006 *)
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Jonathan Vos Post, May 22 2006
EXTENSIONS
More terms from Robert G. Wilson v, May 26 2006
STATUS
approved