login
A118772
Determinant of n X n matrix containing the first n^2 3-almost primes in increasing order.
3
8, -56, 156, 13328, -920, -83678, 1261988, 54252742, 214409844, -3528354250, 247094703588, -509185323508, 15154985424718, 884710401396570, 49777180907707320, -172913218088289027, 844641410704177098, 3066058962037715903, -33948947842497666568
OFFSET
1,1
COMMENTS
3-almost prime analog of A067276 Determinant of n X n matrix containing the first n^2 primes in increasing order. The first column contains the first n 3-almost primes in increasing order, the second column contains the next n 3-almost primes in increasing order, etc. Equivalently, first row contains first n 3-almost primes in increasing order, second row contains next n 3-almost primes in increasing order, etc. See also: A118713 a(n) = semiprime circulant.
EXAMPLE
a(2) = -56 because of the determinant -56 =
|8, 12|
18, 20|.
a(6) = -83678 because of the determinant -83678 =
| 8, 12, 18, 20, 27, 28|
| 30, 42, 44, 45, 50, 52|
| 63, 66, 68, 70, 75, 76|
| 78, 92, 98, 99, 102, 105|
| 110, 114, 116, 117, 124, 125|
| 130, 138, 147, 148, 153, 154|.
MATHEMATICA
ThreeAlmostPrimePi[ n_ ] := Sum[ PrimePi[ n/(Prime @ i*Prime @ j) ] - j + 1, {i, PrimePi[ n^(1/3) ]}, {j, i, PrimePi@ Sqrt[ n/Prime @ i ]} ]; ThreeAlmostPrime[ n_ ] := Block[ {e = Floor[ Log[ 2, n ] + 1 ], a, b}, a = 2^e; Do[ b = 2^p; While[ ThreeAlmostPrimePi[ a ] < n, a = a + b ]; a = a - b/2, {p, e, 0, -1} ]; a + b/2 ]; Table[ Det[ Partition[ Array[ ThreeAlmostPrime, n^2 ], n ] ], {n, 19} ] (* Robert G. Wilson v, May 26 2006 *)
With[{tap=Select[Range[4000], PrimeOmega[#]==3&]}, Table[Det[ Partition[ Take[tap, n^2], n]], {n, 20}]] (* Harvey P. Dale, Apr 17 2020 *)
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Jonathan Vos Post, May 22 2006
EXTENSIONS
More terms from Robert G. Wilson v, May 26 2006
Typos in Mma program corrected by Giovanni Resta, Jun 12 2016
STATUS
approved