OFFSET
0,1
COMMENTS
Partial sums of A152750.
LINKS
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
G.f.: 8*(1 + 3*x)/(1 - x)^4.
E.g.f.: (4/3)*exp(x)*(6 + 36*x + 27*x^2 + 4*x^3).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 4*A268684(n + 1).
Sum_{n>=0} 1/a(n) = -3*(2*Pi - 12*log(2) + 1)/20 = 0.15518712893...
a(n) = 8*A002412(n+1). - Yasser Arath Chavez Reyes, Feb 23 2024
EXAMPLE
a(0) = (0 + 2)*(1 + 3) = 8;
a(1) = (0 + 2)*(1 + 3) + (2 + 4)*(3 + 5) = 56;
a(2) = (0 + 2)*(1 + 3) + (2 + 4)*(3 + 5) + (4 + 6)*(5 + 7) = 176;
a(3) = (0 + 2)*(1 + 3) + (2 + 4)*(3 + 5) + (4 + 6)*(5 + 7) + (6 + 8)*(7 + 9) = 400, etc
MATHEMATICA
Table[(4 (n + 1)) (n + 2) ((4 n + 3)/3), {n, 0, 38}]
LinearRecurrence[{4, -6, 4, -1}, {8, 56, 176, 400}, 39]
PROG
(PARI) a(n) = 4*(n + 1)*(n + 2)*(4*n + 3)/3; \\ Michel Marcus, Apr 10 2016
(PARI) x='x+O('x^99); Vec(8*(1+3*x)/(1-x)^4) \\ Altug Alkan, Apr 10 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Apr 09 2016
STATUS
approved