login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118780
Semiprime(n)*semiprime(n+3) - semiprime(n+1)*semiprime(n+2), where semiprime(n) is the n-th semiprime.
3
-14, -6, -5, 0, -7, -87, -4, 76, -8, -212, 64, -4, 128, 68, -265, 31, -12, -177, 104, 109, -28, 103, -101, -40, -24, -348, -176, 253, 81, -285, -97, 928, 364, -841, -257, -361, -127, -3, -125, 603, 359, -675, 367, -8, -860, 139, -3, 995, 280, -1276, -167, 629, 145, 443, -365, -579, 171, -569
OFFSET
1,1
COMMENTS
Semiprime analog of A117301.
By construction, every entry is also the difference between two 4-almost primes: a(1) = A014613(4)-A014613(5); a(2) = A014613(9)-A014613(11); a(3) = A014613(16)-A014613(18); a(4) = A014613(27)-A014613(27); etc. - R. J. Mathar, Nov 27 2007
LINKS
FORMULA
a(n) = A001358(n)*A001358(n+3) - A001358(n+1)*A001358(n+2).
EXAMPLE
a(1) = -14 because the determinant of the first block of 4 consecutive semiprimes is:
|4. 6.|
|9. 10|.
a(4) = 0 because the determinant of the 4th block of 4 semiprimes is the first of a presumably infinite number of singular matrices:
|10. 14.|
|15. 21.|.
a(8) = 76, the first positive value in the sequence:
|22. 25.|
|26. 33.|.
MAPLE
A001358 := proc(n) option remember ; local a; if n = 1 then 4 ; else for a from A001358(n-1)+1 do if numtheory[bigomega](a)= 2 then RETURN(a) ; fi ; od: fi ; end: A118780 := proc(n) A001358(n)*A001358(n+3)-A001358(n+1)*A001358(n+2) ; end: seq(A118780(n), n=1..58) ; # R. J. Mathar, Nov 27 2007
MATHEMATICA
nmax = 58; spmax = nmax; SP = {};
While[nmax+3 > Length[SP], spmax += nmax; SP = Select[Range[spmax], PrimeOmega[#] == 2&]];
a[n_] := SP[[n]] SP[[n+3]] - SP[[n+1]] SP[[n+2]];
Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Aug 01 2023 *)
#[[1]]#[[4]]-#[[2]]#[[3]]&/@Partition[Select[Range[300], PrimeOmega[#]==2&], 4, 1] (* Harvey P. Dale, Sep 08 2024 *)
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Jonathan Vos Post, May 22 2006
EXTENSIONS
Better definition from Jens Kruse Andersen, May 03 2008
STATUS
approved