Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 08 2024 17:50:44
%S -14,-6,-5,0,-7,-87,-4,76,-8,-212,64,-4,128,68,-265,31,-12,-177,104,
%T 109,-28,103,-101,-40,-24,-348,-176,253,81,-285,-97,928,364,-841,-257,
%U -361,-127,-3,-125,603,359,-675,367,-8,-860,139,-3,995,280,-1276,-167,629,145,443,-365,-579,171,-569
%N Semiprime(n)*semiprime(n+3) - semiprime(n+1)*semiprime(n+2), where semiprime(n) is the n-th semiprime.
%C Semiprime analog of A117301.
%C By construction, every entry is also the difference between two 4-almost primes: a(1) = A014613(4)-A014613(5); a(2) = A014613(9)-A014613(11); a(3) = A014613(16)-A014613(18); a(4) = A014613(27)-A014613(27); etc. - _R. J. Mathar_, Nov 27 2007
%H Harvey P. Dale, <a href="/A118780/b118780.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = A001358(n)*A001358(n+3) - A001358(n+1)*A001358(n+2).
%e a(1) = -14 because the determinant of the first block of 4 consecutive semiprimes is:
%e |4. 6.|
%e |9. 10|.
%e a(4) = 0 because the determinant of the 4th block of 4 semiprimes is the first of a presumably infinite number of singular matrices:
%e |10. 14.|
%e |15. 21.|.
%e a(8) = 76, the first positive value in the sequence:
%e |22. 25.|
%e |26. 33.|.
%p A001358 := proc(n) option remember ; local a; if n = 1 then 4 ; else for a from A001358(n-1)+1 do if numtheory[bigomega](a)= 2 then RETURN(a) ; fi ; od: fi ; end: A118780 := proc(n) A001358(n)*A001358(n+3)-A001358(n+1)*A001358(n+2) ; end: seq(A118780(n),n=1..58) ; # _R. J. Mathar_, Nov 27 2007
%t nmax = 58; spmax = nmax; SP = {};
%t While[nmax+3 > Length[SP], spmax += nmax; SP = Select[Range[spmax], PrimeOmega[#] == 2&]];
%t a[n_] := SP[[n]] SP[[n+3]] - SP[[n+1]] SP[[n+2]];
%t Table[a[n], {n, 1, nmax}] (* _Jean-François Alcover_, Aug 01 2023 *)
%t #[[1]]#[[4]]-#[[2]]#[[3]]&/@Partition[Select[Range[300],PrimeOmega[#]==2&],4,1] (* _Harvey P. Dale_, Sep 08 2024 *)
%Y Cf. A001358, A067276, A117301, A118713.
%K easy,sign
%O 1,1
%A _Jonathan Vos Post_, May 22 2006
%E Better definition from _Jens Kruse Andersen_, May 03 2008