This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220672 Coefficients of powers of x^2 of polynomials, called  h(2,n,x^2), appearing in a conjecture on alternating sums of fifth powers of odd indexed Chebyshev S polynomials stated in A220671. 1
 -14, 6, 5, -12, 3, 46, -95, 16, 75, -69, 24, -3, 106, -520, 928, -607, -351, 894, -651, 234, -42, 3, 186, -1600, 5840, -11355, 11005, -1110, -9615, 11580, -6906, 2433, -513, 60, -3, 286, -3775, 22360, -75595, 153515, -177565, 77115, 84495, -171324, 145302, -75831, 26235, -6057, 900, -78, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The row lengths sequence for this irregular triangle is 3*n+1 = A016777(n). A generalized Melham conjecture involving fifth powers (m=2) of odd indexed Chebyshev S polynomials (see A049310) is H(2,n,x^2):=  (x^2-3)*(x^4-5*x^2+5)*sum(((-1)^k)*(S(2*k-1,x)/x)^(2*m+1), k=0..n)/((1 - (-1)^n*S(2*n,x))/x^2)^2 = h(2,n,x^2) - 3*z(n) + 8*z(n)^2 + 4*z(n)^3, with z(n):= ((-1)^n)*S(2*n,x), and h an integer polynomial of degree 3*n.   The present array a(n,p) appears as h(2,n,x^2) = sum(a(n,p)*x^(2*p),p=0..3*n), n >= 1. The entry a(0,0) := -14 has been used because, in accordance with the original Melham conjecture (see a comment on A220671), h(2,n,i^2), with the imaginary unit i, is conjectured to be -14, for all n >= 1.   [-14, -3, 8, 4] is row m=2 of A217475. LINKS FORMULA a(n,p) = [x^(2p)] h(0,2,n,x^2), with the polynomial h defined above in a comment. The conjecture is that h is an integer polynomial of degree 3n in x^2. EXAMPLE The array a(n,p) begins: n\p   0     1    2     3     4    5     6    7    8  9 0:  -14 1:    6     5  -12     3 2:   46   -95   16    75   -69   24    -3 3:  106  -520  928  -607  -351  894  -651  234  -42  3 ... Row n=4: [186, -1600, 5840, -11355, 11005, -1110, -9615, 11580, -6906, 2433, -513, 60, -3]; Row n=5: [286, -3775, 22360, -75595, 153515, -177565, 77115, 84495, -171324, 145302, -75831, 26235, -6057, 900, -78, 3]. Thus the conjecture is true at least for n=1..5. CROSSREFS Cf. A220670, A220671. Sequence in context: A239863 A294899 A118780 * A051655 A048932 A033334 Adjacent sequences:  A220669 A220670 A220671 * A220673 A220674 A220675 KEYWORD sign,tabf AUTHOR Wolfdieter Lang, Jan 14 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 11:26 EDT 2019. Contains 327193 sequences. (Running on oeis4.)