login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A217475 Coefficients of polynomials in a Melham conjecture. 5
2, 1, -14, -3, 8, 4, 278, 3, -272, -92, 88, 44, -15016, 2188, 19392, 3932, -11528, -4488, 2552, 1276, 2172632, -589732, -3352096, -288860, 2774376, 809160, -1156056, -481052, 193952, 96976, -835765304, 313775572, 1463316448, -23403160, -1510122768, -308310816, 893501136, 303807944, -285885248, -123644400, 38596448, 19298224 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The row length sequence for this array is [2,4,6,8,...] = 2*A000027.

A conjecture by Melham (see the reference, eq. 2.7) is:

  sum(L(2*i+1),i=0..m)*sum(F(2*k)^(2*m+1),k=0..n) = (F(2*n+1)-1)^2*P(2*m-1,F(2*n+1)), where F=A000045 (Fibonacci), L=A000032 (Lucas) and P is an integer polynomial of degree 2*m-1 in x=F(2*n+1), for m >= 1 and n >= 0.

The table a(m,l) lists the coefficients of these polynomials for m=1..6. Thus the conjecture is certainly true for m=1..6.

  P(2*m-1,x) = sum(a(m,l)*x^l,l=0..2*m-1), m>=1, where x= F(2*n+1), n>=0.

The absolute terms a(m,0), the first column entries, are given by A217744(m), m>=1.

See also the Wang and Zhang reference, Theorem 2. (D) and the Corollaries 2 and 3. Corollary 3 proves

  sum(L(2*i+1),i=0..m)*sum(F(2*k)^(2*m+1),k=0..n) = (F(2*n+1)-1)*H(2*m,F(2*n+1)), with an integer polynomial of degree 2*n. (Thanks go to B. Cloitre for pointing out this paper). - Wolfdieter Lang, Oct 18 2012

LINKS

Table of n, a(n) for n=1..42.

R. S. Melham, Some conjectures concerning sums of odd powers of Fibonacci and Lucas numbers, The Fibonacci Quart. 46/47 (2008/2009), no. 4, 312-315.

T. Wang and W. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roumanie, Tome 55(103), No.1, (2012) 95-103.

FORMULA

a(m,l) = [x^l]P(2*m-1,x), m>-1, l=0..2*m-1, with the polynomial P appearing in the Melham conjecture stated in the comment section.

EXAMPLE

The array a(m,l) starts:

m\l     0      1        2      3      4     5     6      7 ...

1:      2      1

2:    -14     -3        8      4

3:    278      3     -272    -92     88    44

4: -15016   2188    19392   3932 -11528 -4488  2552   1276

...

Row 5: 2172632 -589732 -3352096 -288860 2774376 809160 -1156056 -481052 193952 96976.

Row 6: -835765304  313775572  1463316448  -23403160  -1510122768 -308310816,893501136 303807944 -285885248 -123644400  38596448  19298224.

Row 7: 851104689248 -394334131664 -1639772952576 174968334112 1989709620800 248542106736 -1492625407328 -403454346592 685716714144 253835649760 -178045414624 -78968332608 20108749408 10054374704.  Thus conjecture is true for m=7 as well.

m=1: 1*4*sum(F(2*k)^3,k=0..n) = 4*A163198(n) = (x-1)^2*(2 + x)  = 2-3*x+x^3 with x=F(2*n+1).  See also A217472, the example for m=1.

m=2: 1*4*11*sum(F(2*k)^5,k=0..n) = 44*A217471(n) = (x-1)^2* (-14 - 3*x + 8*x^2 + 4*x^3) = -14 + 25*x - 15*x^3 + 4*x^5 with x=F(2*n+1). See also A217472, the example for m=2.

CROSSREFS

Cf. A217472, A217474.

Sequence in context: A285653 A280412 A155729 * A288298 A288762 A187920

Adjacent sequences:  A217472 A217473 A217474 * A217476 A217477 A217478

KEYWORD

sign,tabf

AUTHOR

Wolfdieter Lang, Oct 13 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 17:57 EDT 2021. Contains 347659 sequences. (Running on oeis4.)