login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A217476
Coefficient triangle for the square of the monic integer Chebyshev T-polynomials A127672.
5
4, 0, 1, 4, -4, 1, 0, 9, -6, 1, 4, -16, 20, -8, 1, 0, 25, -50, 35, -10, 1, 4, -36, 105, -112, 54, -12, 1, 0, 49, -196, 294, -210, 77, -14, 1, 4, -64, 336, -672, 660, -352, 104, -16, 1, 0, 81, -540, 1386, -1782, 1287, -546, 135, -18, 1, 4, -100, 825, -2640, 4290, -4004, 2275, -800, 170, -20, 1
OFFSET
0,1
COMMENTS
The monic integer T-polynomials, called R(n,x) (in Abramowitz-Stegun C(n,x)), with their coefficient triangle given in A127672, when squared, become polynomials in y=x^2:
R(n,x)^2 = sum(T(n,k)*y^k,m=0..n).
R(n,x)^2 = 2 + R(2*n,x). From the bisection of the R-(or T-)polynomials, the even part. Directly from the R(m*n,x)=R(m,R(n,x)) property for m=2.
The o.g.f. is G(z,y) := sum((R(n,sqrt(y))^2)*z^n ,n=0..infinity) = (4 + (4 - 3*y)*z + y*z^2)/((1 +(2-y)*z + z^2)*(1-z)). From the bisection.
The o.g.f.s of the columns k>=1 are x^k*(1-x)/(1+x)^(2*k+1),
and for k=0 the o.g.f. is 4/(1-x^2).
Hetmaniok et al. (2015) refer to these as "modified Chebyshev" polynomials. - N. J. A. Sloane, Sep 13 2016
REFERENCES
E Hetmaniok, P Lorenc, S Damian, et al., Periodic orbits of boundary logistic map and new kind of modified Chebyshev polynomials in R. Witula, D. Slota, W. Holubowski (eds.), Monograph on the Occasion of 100th Birthday Anniversary of Zygmunt Zahorski. Wydawnictwo Politechniki Slaskiej, Gliwice 2015, pp. 325-343.
FORMULA
T(n,k) = [x^(2*k)]R(n,x)^2, with R(n,x) the monic integer version of the Chebyshev T(n,x) polynomial.
T(n,k) = 0 if n<k, T(0,0) = 4, T(n,k) = 2*[k=0] + 2*n*(-1)^(n-k)*binomial(n+k,n-k)/(n+k), n>=1. ([k=0] means 1 if k=0 else 0).
EXAMPLE
The triangle begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
0: 4
1: 0 1
2: 4 -4 1
3: 0 9 -6 1
4: 4 -16 20 -8 1
5: 0 25 -50 35 -10 1
6: 4 -36 105 -112 54 -12 1
7: 0 49 -196 294 -210 77 -14 1
8: 4 -64 336 -672 660 -352 104 -16 1
9: 0 81 -540 1386 -1782 1287 -546 135 -18 1
10: 4 -100 825 -2640 4290 -4004 2275 -800 170 -20 1
...
n=2: R(2,x) = -2 + y, R(2,x)^2 = 4 -4*y + y^2, with y=x^2.
n=3: R(3,x) = 3*x - x^3, R(3,x)^2 = 9*y - 6*y^2 +y^3, with y=x^2.
T(4,1) = 8*(-1)^3*binomial(5,3)/5 = -16.
T(4,0) = 2 + 8*(-1)^4*binomial(4,4)/4 = 4.
T(n,1) = (-1)^(n-1)*2*n*(n+1)!/((n-1)!*2!*(n+1)) = -((-1)^n)*n^2 = A162395(n), n >= 1.
T(n,2) = (-1)^n*A002415(n), n >= 0.
T(n,3) = -(-1)^n*A040977(n-3), n >= 3.
T(n,4) = (-1)^n*A053347(n-4), n >= 4.
T(n,5) = -(-1)^n*A054334(n-5), n >= 5.
CROSSREFS
Cf. A127672, A158454 (square of S-polynomials), A128495 (sum of square of S-polynomials).
Sequence in context: A232195 A309333 A298924 * A298622 A298454 A298834
KEYWORD
sign,easy,tabl
AUTHOR
Wolfdieter Lang, Oct 17 2012
STATUS
approved