login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217479
Array of coefficients of polynomials providing the third term of the numerator of the generating function for odd powers (2*m+1) of Chebyshev S-polynomials. The present polynomials are called P(m;2,x^2), m >= 2.
1
-8, 6, -27, 65, -56, 15, -61, 260, -469, 415, -176, 28, -114, 736, -2104, 3214, -2838, 1456, -400, 45, -190, 1714, -6988, 15699, -21461, 18760, -10614, 3768, -760, 66, -293, 3507, -19195, 58807, -112123, 141441, -122168, 73185, -30077, 8107, -1288, 91
OFFSET
2,1
COMMENTS
The row length of this irregular triangle is 2*(m-1), m >= 2.
For the o.g.f. of S(m,x)^(2*m+1), m>=0, with Chebyshev's S-polynomials (coefficient triangle A049310) see the comment on A217478. G(m;z,x) = Z(m;z,x)/N(m;z,x) with N(m;z,x) = product((1+z^2) - z*x*tau(k,x),k=0..m), and Z(m;z,x) = sum((1+z^2)^(m-l)*(-z*x)^l*P(m;l,x^2),l=0..m), where P(m,l,x^2) = sum(T(m,k)*S(2*k,x)*sigma(m;k,l,x^2), k=0..m)/(x^2-4)^m, with sigma(m;k,l,x^2) the elementary symmetric function of a product of l factors from tau(j,x), for j=0..m, with tau(k,x) missing. Here tau(j,x):= 2*T(2*j+1,x/2)/x = R(2*j+1,x)/x (see A127672 for the coefficients of R(n,x)).
The present array a(m,k) provides the P(m;2,x^2) coefficients, and m >= 2: P(m;2,x^2) = sum(a(m,k)*x^2,k=0..(2*m-3)).
Using inclusion-exclusion one can write (x^2-4)^m*P(m;2,x^2) =
sum(T(m,k)*S(2*k,x)*(sigma(m+1;2,x^2) - sum(tau(j,x),j=0..m)* tau(k,x) + tau(k,x)^2),k=0..m), with sigma(m+1;2,x^2) the elementary symmetric function of 2 factors from tau(j,x), for j=0,1,...,m. E.g.,m=2: sigma(2+1;2,x^2) = tau(0,x)*tau(1,x) + tau(0,x)*tau(2,x) + tau(1,x)*tau(2,x). The identities Id(0;m,x^2) and Id(1;m,x^2) (given in the comment on A217478) together with the new identity Id(2;m,x^2) := sum(T(m,k)*S(2*k,x)*tau(k,x)^2,k=0..m) = (x^2-4)^m*((x^2-1)^(2*m+1) + 1)/x^2 are now used. The new identity is obtained from the de Moivre-Binet formula for S and tau using first twice the identity mentioned in a Nov 14 2012 comment on A113187, and then the identity q^3 - 1/q^3 = sqrt(x^2-4)*(x^2-1) (see the instance k=1 of the formula given in a Oct 18 2012 comment on A111125 with x -> q which is defined by (x+sqrt(x^2-4))/2). This yields, after division by (x^2-4)^m, finally the polynomial P(2;m,x^2) = sigma(m+1;2,x^2) - sum(tau(j,x),j=0..m)*x^(2*m) + ((x^2-1)^(2*m+1) + 1)/x^2, for m >= 2.
FORMULA
a(m,k) = [x^(2*k)] P(2;m,x^2), m >= 2, k = 0..(2*m-3), with P(2;m,x^2) given in the comment above.
EXAMPLE
The array a(m,k) starts:
m\k 0 1 2 3 4 5 6 7 8 9 ...
2: -8 6
3: -27 65 -56 15
4: -61 260 -469 415 -176 28
5: -114 736 -2104 3214 -2838 1456 -400 45
6: -190 1714 -6988 15699 -21461 18760 -10614 3768 -760 66
...
Row m=7: -293, 3507, -19195, 58807, -112123, 141441, -122168, 73185, -30077, 8107, -1288, 91.
Row m=8: -427, 6536, -46102, 183762, -461654, 780716, -926345, 790773, -491397, 221760, -71139, 15405, -2016, 120.
Row 9: -596, 11346, -100077, 502036, -1600280, 3470116, -5352805, 6051236, -5110145, 3256825, -1568416, 564980, -148176, 26770, -2976, 153.
m=2: P(2;2,x^2) = tau(0,x)*tau(1,x) + tau(0,x)*tau(2,x) + tau(1,x)*tau(2,x) - (tau(0,x)+tau(1,x)+tau(2,x))*x^4 + (5 -10*x^2 + 10*x^4 - 5*x^6 + x^8) = -8 + 6*x^2 = 2*(-4 + 3*x^2).
The numerator of the o.g.f. for S(n,x)^5 is Z(2;z,x) = (1+z^2)^2 + (1+z^2)*(-x*z)*(3-4*x^2) + (-x*z)^2*2*(-4 + 3*x^2), where the last bracket in the second term comes from row m=2 of A217478. The denominator is N(2;z,x) = product((1+z^2)-z*x*tau(k,x), k=0..2). See the example of A217478.
CROSSREFS
Cf. A217478.
Sequence in context: A300941 A075486 A123875 * A301495 A112145 A058088
KEYWORD
sign,easy,tabf
AUTHOR
Wolfdieter Lang, Nov 14 2012
STATUS
approved