OFFSET
0,5
COMMENTS
Observation: (3/2)*a(n) + 2 is a power of 2 up to n = 6 (giving {2, 2, 2, 2, 8, 32, 128}).
Conjecture: There are no other tetrahedral numbers (Tetra_n = A000292) > 84 such that (3/2)*Tetra_n + 2 is a power of 2. This is true to at least 1.41*10^1505 per computer check by Charles R Greathouse IV on Physics Forums (Nov 2010).
LINKS
Physics Forums, A Tetrahedral Counterpart to Ramanujan-Nagell Triangular Numbers?, Nov 2010.
Index entries for linear recurrences with constant coefficients, signature (2,4,-10,-5,20,0,-20,5,10,-4,-2,1).
FORMULA
a(n) = (1/6)*floor(n^2/4)*(floor(n^2/4)-1)*(floor(n^2/4)-2).
a(2n + 2) = A178208(n+1).
G.f.: -4*x^4*(x^4+3*x^3+7*x^2+3*x+1)/((x-1)^7*(x+1)^5). - Colin Barker, Oct 11 2012
Sum_{n>=4} 1/a(n) = Pi^2/2 - 5/12 - 3*Pi*cot(sqrt(2)*Pi)/(2*sqrt(2)) - 6*Pi*tan(sqrt(5)*Pi/2)/sqrt(5). - Amiram Eldar, Feb 17 2024
MAPLE
a:= n-> binomial(floor(n^2/4), 3):
seq(a(n), n=0..41); # Alois P. Heinz, Feb 16 2024
MATHEMATICA
(#*(#-1)*(#-2)/6)& /@ Table[Floor[n^2/4], {n, 0, 20}] (* Amiram Eldar, Feb 17 2024 *)
PROG
(PARI) a(n)=my(k=floor(n^2/4)); k*(k-1)*(k-2)/6 \\ Charles R Greathouse IV, Oct 05 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Raphie Frank, Oct 04 2012
EXTENSIONS
a(24) corrected by Charles R Greathouse IV, Oct 05 2012
STATUS
approved