login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344063
Expansion of Product_{k>=1} (1 + 4^(k-1)*x^k).
7
1, 1, 4, 20, 80, 384, 1600, 7424, 30720, 143360, 593920, 2703360, 11403264, 51118080, 214958080, 965738496, 4047503360, 17951621120, 76168560640, 334202142720, 1411970498560, 6211596451840, 26203595472896, 114246130073600, 484815908372480, 2101441598586880, 8896148580335616
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..A003056(n)} q(n,k) * 4^(n-k), where q(n,k) is the number of partitions of n into k distinct parts.
a(n) ~ (-polylog(2, -1/4))^(1/4) * 4^n * exp(2*sqrt(-polylog(2, -1/4)*n)) / (2*sqrt(5*Pi/4)*n^(3/4)). - Vaclav Kotesovec, May 09 2021
MATHEMATICA
nmax = 26; CoefficientList[Series[Product[(1 + 4^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 4^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 26}]
PROG
(PARI) seq(n)={Vec(prod(k=1, n, 1 + 4^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 08 2021
STATUS
approved