login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344060
a(n) = Sum_{d|n} sigma(d)^n.
3
1, 10, 65, 2483, 7777, 2990810, 2097153, 2568661988, 10604761518, 3570527751850, 743008370689, 232227195048256531, 793714773254145, 21035724521219881850, 504857283427304833025, 727429690188773950335429, 2185911559738696531969, 43567528891100073055151954340, 5242880000000000000000001
OFFSET
1,2
FORMULA
G.f.: Sum_{k >= 1} (sigma(k) * x)^k/(1 - (sigma(k) * x)^k).
If p is prime, a(p) = 1 + (p+1)^p.
MATHEMATICA
a[n_] := DivisorSum[n, DivisorSigma[1 , #]^n &]; Array[a, 19] (* Amiram Eldar, May 08 2021 *)
PROG
(PARI) a(n) = sumdiv(n, d, sigma(d)^n);
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (sigma(k)*x)^k/(1-(sigma(k)*x)^k)))
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 08 2021
STATUS
approved