login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371408
Number of Dyck paths of semilength n having exactly three (possibly overlapping) occurrences of the consecutive step pattern UDU, where U = (1,1) and D = (1,-1).
3
0, 0, 0, 0, 1, 4, 20, 80, 315, 1176, 4284, 15240, 53295, 183700, 625768, 2110472, 7057505, 23427600, 77271120, 253426752, 827009523, 2686728060, 8693388060, 28026897360, 90058925649, 288516259416, 921755412900, 2937377079000, 9338728806225, 29626186593276
OFFSET
0,6
LINKS
FORMULA
a(n) mod 2 = A121262(n) for n >= 1.
EXAMPLE
a(4) = 1: UDUDUDUD.
a(5) = 4: UDUDUDUUDD, UDUDUUDUDD, UDUUDUDUDD, UUDUDUDUDD.
MAPLE
a:= n-> `if`(n<4, 0, binomial(n-1, 3)*add(binomial(n-3, j)*
binomial(n-3-j, j-1), j=0..ceil((n-3)/2))/(n-3)):
seq(a(n), n=0..29);
# second Maple program:
a:= proc(n) option remember; `if`(n<5, [0$4, 1][n+1],
(n-1)*((2*n-7)*a(n-1)+3*(n-2)*a(n-2))/((n-2)*(n-4)))
end:
seq(a(n), n=0..29);
CROSSREFS
Column k=3 of A091869.
Sequence in context: A082138 A074358 A255050 * A292540 A320934 A344063
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 22 2024
STATUS
approved