login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371411
Number of Dyck paths of semilength 2n having exactly n (possibly overlapping) occurrences of the consecutive step pattern UDU, where U = (1,1) and D = (1,-1).
2
1, 1, 3, 20, 140, 1134, 9702, 87516, 817245, 7852130, 77135630, 771742608, 7839348244, 80661853300, 839138980500, 8813312133840, 93339369441540, 995827949882370, 10694044148599350, 115515073043785800, 1254354063204682440, 13685749828961247180
OFFSET
0,3
LINKS
FORMULA
a(n) = A091869(2n,n).
a(n) mod 2 = 1 <=> n in { round(2^(2*k-3)) : k >= 0 } = { A081294 } U { 0 }.
EXAMPLE
a(1) = 1: UDUD.
a(2) = 3: UDUDUUDD, UDUUDUDD, UUDUDUDD.
a(3) = 20: UDUDUDUUDDUD, UDUDUDUUUDDD, UDUDUUDDUDUD, UDUDUUDUDDUD, UDUDUUDUUDDD, UDUDUUUDUDDD, UDUUDDUDUDUD, UDUUDUDDUDUD, UDUUDUDUDDUD, UDUUDUDUUDDD, UDUUDUUDUDDD, UDUUUDUDUDDD, UUDDUDUDUDUD, UUDUDDUDUDUD, UUDUDUDDUDUD, UUDUDUDUDDUD, UUDUDUDUUDDD, UUDUDUUDUDDD, UUDUUDUDUDDD, UUUDUDUDUDDD.
a(4) = 140: UDUDUDUDUUDDUUDD, UDUDUDUDUUUDDDUD, UDUDUDUDUUUDDUDD, ..., UUUDUDUUDUDUDDDD, UUUDUUDUDUDUDDDD, UUUUDUDUDUDUDDDD.
MAPLE
a:= proc(n) option remember; `if`(n<2, 1, (2*(n-1)*(2*n-1)^2*
a(n-1)+12*(n-2)*(2*n-1)*(2*n-3)*a(n-2))/((n+1)*n*(n-1)))
end:
seq(a(n), n=0..21);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 22 2024
STATUS
approved