|
|
A082143
|
|
First subdiagonal of number array A082137.
|
|
6
|
|
|
1, 3, 20, 140, 1008, 7392, 54912, 411840, 3111680, 23648768, 180590592, 1384527872, 10650214400, 82158796800, 635361361920, 4924050554880, 38233804308480, 297374033510400, 2316387208396800, 18067820225495040
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (2^(n-1) + 0^n/2)C(2n+1, n).
Conjecture: (n+1)*a(n) +4*(-2*n-1)*a(n-1)=0. - R. J. Mathar, Oct 19 2014
|
|
EXAMPLE
|
a(0)=(2^(-1)+(0^0)/2)C(1,0)=2*(1/2)=1 (use 0^0=1).
|
|
MATHEMATICA
|
Join[{1}, Table[2^(n-1)* Binomial[2*n+1, n], {n, 1, 30}] (* G. C. Greubel, Feb 05 2018 *)
|
|
PROG
|
(Haskell)
a082143 0 = 1
a082143 n = (a000079 $ n - 1) * (a001700 n)
(PARI) for(n=0, 30, print1((2^(n-1) + 0^n/2)*Binomial(2*n+1, n), ", ")) \\ G. C. Greubel, Feb 05 2018
(Magma) [(2^(n-1) + 0^n/2)*Binomial(2*n+1, n): n in [0..30]]; // G. C. Greubel, Feb 05 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|