The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A082143 First subdiagonal of number array A082137. 6
 1, 3, 20, 140, 1008, 7392, 54912, 411840, 3111680, 23648768, 180590592, 1384527872, 10650214400, 82158796800, 635361361920, 4924050554880, 38233804308480, 297374033510400, 2316387208396800, 18067820225495040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 FORMULA a(n) = (2^(n-1) + 0^n/2)C(2n+1, n). Conjecture: (n+1)*a(n) +4*(-2*n-1)*a(n-1)=0. - R. J. Mathar, Oct 19 2014 From Reinhard Zumkeller, Jan 15 2015: (Start) a(n) = A000079(n-1) * A001700(n), for n > 0. a(n) = A069720(n+1)/2. (End) EXAMPLE a(0)=(2^(-1)+(0^0)/2)C(1,0)=2*(1/2)=1 (use 0^0=1). MATHEMATICA Join[{1}, Table[2^(n-1)* Binomial[2*n+1, n], {n, 1, 30}] (* G. C. Greubel, Feb 05 2018 *) PROG (Haskell) a082143 0 = 1 a082143 n = (a000079 \$ n - 1) * (a001700 n) -- Reinhard Zumkeller, Jan 15 2015 (PARI) for(n=0, 30, print1((2^(n-1) + 0^n/2)*Binomial(2*n+1, n), ", ")) \\ G. C. Greubel, Feb 05 2018 (Magma) [(2^(n-1) + 0^n/2)*Binomial(2*n+1, n): n in [0..30]]; // G. C. Greubel, Feb 05 2018 CROSSREFS Cf. A069723, A082144, A082145. Cf. A000079, A001700, A069720. Sequence in context: A267899 A073514 A163065 * A342055 A009156 A074573 Adjacent sequences: A082140 A082141 A082142 * A082144 A082145 A082146 KEYWORD easy,nonn AUTHOR Paul Barry, Apr 06 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 17:34 EDT 2023. Contains 365714 sequences. (Running on oeis4.)