login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082144
A subdiagonal of number array A082137.
5
1, 4, 30, 224, 1680, 12672, 96096, 732160, 5601024, 42997760, 331082752, 2556051456, 19778969600, 153363087360, 1191302553600, 9268801044480, 72219408138240, 563445537177600, 4401135695953920, 34414895667609600, 269374774271016960, 2110381254330286080
OFFSET
0,2
LINKS
FORMULA
a(n) = (2^(n-1) + 0^n/2)*C(2*n+2, n).
(n+2)*a(n) +12*(-n-1)*a(n-1) +16*(2*n-1)*a(n-2)=0. - R. J. Mathar, Oct 29 2014
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=0} 1/a(n) = 88*arccot(sqrt(7))/(7*sqrt(7)) - 3/7.
Sum_{n>=0} (-1)^n/a(n) = 52*log(2)/27 - 5/9. (End)
EXAMPLE
a(0)=(2^(-1)+(0^0)/2)C(2,0)=2*(1/2)=1 (use 0^0=1).
MATHEMATICA
Join[{1}, Table[2^(n-1)*Binomial[2*n+2, n], {n, 1, 50}]] (* G. C. Greubel, Feb 05 2018 *)
PROG
(PARI) for(n=0, 30, print1((2^(n-1) + 0^n/2)*Binomial(2*n+2, n), ", ")) \\ G. C. Greubel, Feb 05 2018
(Magma) [(2^(n-1) + 0^n/2)*Binomial(2*n+2, n): n in [0..30]]; // G. C. Greubel, Feb 05 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 06 2003
STATUS
approved