login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082147
a(0)=1; for n >= 1, a(n) = Sum_{k=0..n} 8^k*N(n,k) where N(n,k) = (1/n)*C(n,k)*C(n,k+1) are the Narayana numbers (A001263).
8
1, 1, 9, 89, 945, 10577, 123129, 1476841, 18130401, 226739489, 2878666857, 37006326777, 480750990993, 6301611631473, 83240669582937, 1106980509493641, 14808497812637121, 199138509770855489, 2690461489090104009
OFFSET
0,3
COMMENTS
More generally coefficients of (1 + m*x - sqrt(m^2*x^2 - (2*m+4)*x+1))/( (2*m+2)*x) are given by a(n) = Sum_{k=0..n} (m+1)^k*N(n,k)).
The Hankel transform of this sequence is 8^C(n+1,2). - Philippe Deléham, Oct 29 2007
Shifts left when INVERT transform applied eight times. - Benedict W. J. Irwin, Feb 07 2016
LINKS
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
FORMULA
G.f.: (1 + 7*x - sqrt(49*x^2-18*x+1))/(16*x).
a(n) = Sum_{k=0..n} A088617(n, k)*8^k*(-7)^(n-k). - Philippe Deléham, Jan 21 2004
a(n) = (9(2n-1)a(n-1) - 49(n-2)a(n-2)) / (n+1) for n >= 2, a(0) = a(1) = 1. - Philippe Deléham, Aug 19 2005
a(n) = upper left term in M^n, M = the production matrix:
1, 1
8, 8, 8
1, 1, 1, 1
8, 8, 8, 8, 8
1, 1, 1, 1, 1, 1
...
- Gary W. Adamson, Jul 08 2011
a(n) ~ sqrt(16+18*sqrt(2))*(9+4*sqrt(2))^n/(16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
G.f.: 1/(1 - x/(1 - 8*x/(1 - x/(1 - 8*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Apr 21 2017
a(n) = hypergeom([1 - n, -n], [2], 8). - Peter Luschny, Mar 19 2018
MAPLE
A082147_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := a[w-1]+8*add(a[j]*a[w-j-1], j=1..w-1) od;
convert(a, list) end: A082147_list(18); # Peter Luschny, May 19 2011
MATHEMATICA
Table[SeriesCoefficient[(1+7*x-Sqrt[49*x^2-18*x+1])/(16*x), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 14 2012 *)
f[n_] := Sum[ 8^k*Binomial[n, k]*Binomial[n, k + 1]/n, {k, 0, n}]; f[0] = 1; Array[f, 21, 0] (* Robert G. Wilson v, Feb 24 2018 *)
a[n_] := Hypergeometric2F1[1 - n, -n, 2, 8];
Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 19 2018 *)
PROG
(PARI) a(n)=if(n<1, 1, sum(k=0, n, 8^k/n*binomial(n, k)*binomial(n, k+1)))
(Magma) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!((1+7*x-Sqrt(49*x^2-18*x+1))/(16*x))) // G. C. Greubel, Feb 05 2018
(GAP) a:=n->Sum([0..n], k->8^k*(1/n)*Binomial(n, k)*Binomial(n, k+1));;
Concatenation([1], List([1..18], n->a(n))); # Muniru A Asiru, Feb 10 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, May 10 2003
STATUS
approved