login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152267
a(n) = ((9 + sqrt(8))^n + (9 - sqrt(8))^n)/2.
2
1, 9, 89, 945, 10513, 120249, 1397033, 16368417, 192648097, 2272771305, 26846572409, 317325998097, 3752068179889, 44372429376921, 524802751652681, 6207262185233025, 73420118463548737, 868431992821866441
OFFSET
0,2
COMMENTS
Binomial transform of A145303. - Philippe Deléham, Dec 03 2008
FORMULA
From Philippe Deléham, Dec 03 2008: (Start)
a(n) = 18*a(n-1) - 73*a(n-2), n > 1; a(0)=1, a(1)=9.
G.f.: (1-9*x)/(1-18*x+73*x^2).
a(n) = Sum_{k=0..n} A098158(n,k)*9^(2k-n)*8^(n-k). (End)
MATHEMATICA
LinearRecurrence[{18, -73}, {1, 9}, 30] (* Harvey P. Dale, May 14 2014 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r8>:=NumberField(x^2-8); S:=[ ((9+r8)^n+(9-r8)^n)/2: n in [0..17] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Dec 03 2008
CROSSREFS
Sequence in context: A059482 A109002 A142991 * A082147 A095722 A199759
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Dec 01 2008
EXTENSIONS
Extended beyond a(6) by Klaus Brockhaus, Dec 03 2008
STATUS
approved