login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152270
Let f(n)=Floor[Mod[10^k*(7/(4*k + 1) - 6/(4*k + 3) - 1/(4*k + 5)), 3]]; M0 = {{0, 1}, {1, 1/2}}; M = {{0, 2}, {2, 1}}; as Mh=M0.M.(M0+I*f[n]); v[(n)=Mh.v(n-1), then a(n) is the first element of v.
1
0, 1, -3, -13, 15, -37, 23, -125, -467, -2269, -2269, -12147, -66877, -66877, -66877, -66877, -370963, -2061725, -11464371, 17899313, 99555423, 99555423, -155471765, -864636987, 1350136841, 1350136841, -2108411107, -2108411107
OFFSET
0,3
LINKS
MATHEMATICA
f[k_] = Floor[Mod[10^k*(7/(4*k + 1) - 6/(4*k + 3) - 1/(4*k + 5)), 3]];
M0 = {{0, 1}, {1, 1/2}}; M = {{0, 2}, {2, 1}};
Mh[n_] := M0.(M.Inverse[f[n]*IdentityMatrix[2] + M0]);
v[0] = {0, 1};
v[n_] := v[n] = Mh[n].v[n - 1]
Table[ -v[n][[1]]/2, {n, 0, 30}]
CROSSREFS
Sequence in context: A146512 A082704 A353060 * A032919 A340018 A216044
KEYWORD
sign,uned,obsc,base
AUTHOR
STATUS
approved