The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152271 a(n)=1 for even n and (n+1)/2 for odd n. 14
 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 13, 1, 14, 1, 15, 1, 16, 1, 17, 1, 18, 1, 19, 1, 20, 1, 21, 1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 1, 27, 1, 28, 1, 29, 1, 30, 1, 31, 1, 32, 1, 33, 1, 34, 1, 35, 1, 36, 1, 37, 1, 38, 1, 39, 1, 40, 1, 41, 1, 42, 1, 43, 1, 44 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS A000012 and A000027 interleaved. - Omar E. Pol, Mar 12 2012 Run lengths in A128218. - Reinhard Zumkeller, Jun 20 2015 a(n+1) is the number of reversible binary strings of length n+1 with Hamming weight 1 or 2 such that the 1's are separated by an even number of 0's. - Christian Barrientos, Jan 28 2019 LINKS Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1). FORMULA a(n) = 2*a(n-2) - a(n-4) with a(0)=a(1)=a(2)=1 and a(3)=2. a(n) = (a(n-2) + a(n-3))/a(n-1). G.f.: (1 + x - x^2)/(1 - 2*x^2 + x^4). a(n) = A057979(n+2). a(n) = (1/4)*(3 + n + (1-n)*(-1)^n), with n >= 0. - Paolo P. Lava, Dec 12 2008 a(n)*a(n+1) = floor((n+2)/2) = A008619(n). - Paul Barry, Feb 27 2009 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*0^floor((n-2k)/2). - Paul Barry, Feb 27 2009 a(n) = gcd(floor((n+1)/2), (n+1)). - Enrique Pérez Herrero, Mar 13 2012 G.f.: U(0) where U(k) = 1 + x*(k+1)/(1 - x/(x + (k+1)/U(k+1))) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 04 2012 E.g.f.: ((2 + x)*cosh(x) + sinh(x))/2. - Stefano Spezia, Mar 26 2022 a(n) = (-1)^n * a(-2-n) for all n in Z. - Michael Somos, Mar 26 2022 EXAMPLE G.f. = 1 + x + x^2 + 2*x^3 + x^4 + 3*x^5 + x^6 + 4*x^7 + x^8 + ... - Michael Somos, Mar 26 2022 MATHEMATICA Table[If[EvenQ[n], 1, (n+1)/2], {n, 0, 120}] (* or *) LinearRecurrence[{0, 2, 0, -1}, {1, 1, 1, 2}, 120] (* or *) Riffle[Range[60], 1, {1, -1, 2}] (* Harvey P. Dale, Jan 20 2018 *) PROG (PARI) Vec((1+x-x^2)/(1-2*x^2+x^4)+O(x^99)) \\ Charles R Greathouse IV, Jan 12 2012 (PARI) a(n)=gcd(n+1, (n+1)\2) \\ Charles R Greathouse IV, Mar 13 2012 (Haskell) import Data.List (transpose) a152271 = a057979 . (+ 2) a152271_list = concat \$ transpose [repeat 1, [1..]] -- Reinhard Zumkeller, Aug 11 2014 CROSSREFS Cf. A000012, A000027, A008619, A057979, A128218. Sequence in context: A177815 A007879 A057979 * A133622 A158416 A318225 Adjacent sequences:  A152268 A152269 A152270 * A152272 A152273 A152274 KEYWORD nonn,easy AUTHOR Philippe Deléham, Dec 01 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 5 23:40 EDT 2022. Contains 355108 sequences. (Running on oeis4.)