login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let f(n)=Floor[Mod[10^k*(7/(4*k + 1) - 6/(4*k + 3) - 1/(4*k + 5)), 3]]; M0 = {{0, 1}, {1, 1/2}}; M = {{0, 2}, {2, 1}}; as Mh=M0.M.(M0+I*f[n]); v[(n)=Mh.v(n-1), then a(n) is the first element of v.
1

%I #18 Aug 29 2022 06:12:07

%S 0,1,-3,-13,15,-37,23,-125,-467,-2269,-2269,-12147,-66877,-66877,

%T -66877,-66877,-370963,-2061725,-11464371,17899313,99555423,99555423,

%U -155471765,-864636987,1350136841,1350136841,-2108411107,-2108411107

%N Let f(n)=Floor[Mod[10^k*(7/(4*k + 1) - 6/(4*k + 3) - 1/(4*k + 5)), 3]]; M0 = {{0, 1}, {1, 1/2}}; M = {{0, 2}, {2, 1}}; as Mh=M0.M.(M0+I*f[n]); v[(n)=Mh.v(n-1), then a(n) is the first element of v.

%H G. C. Greubel, <a href="/A152270/b152270.txt">Table of n, a(n) for n = 0..1000</a>

%t f[k_] = Floor[Mod[10^k*(7/(4*k + 1) - 6/(4*k + 3) - 1/(4*k + 5)), 3]];

%t M0 = {{0, 1}, {1, 1/2}}; M = {{0, 2}, {2, 1}};

%t Mh[n_] := M0.(M.Inverse[f[n]*IdentityMatrix[2] + M0]);

%t v[0] = {0, 1};

%t v[n_] := v[n] = Mh[n].v[n - 1]

%t Table[ -v[n][[1]]/2, {n, 0, 30}]

%K sign,uned,obsc,base

%O 0,3

%A _Roger L. Bagula_ and _Alexander R. Povolotsky_, Dec 01 2008