OFFSET
1,2
COMMENTS
Positive integers k such that Hypergeometric[k/4,(4-k)/4,1/2,3/4] = 2*cos(Pi/6).
LINKS
David Lovler, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
a(2k-1) = 12*(k-1)+1, a(2k) = 12*(k-1)+3, where k>0.
With offset 0, a(n) = 8*floor(n/2) + 2*n + 1, or a(n) = 6*n - 1 + 2*(-1)^n. - Gary Detlefs, Mar 13 2010
a(n) = 12*n-a(n-1)-20 (with a(1)=1). - Vincenzo Librandi, Nov 26 2010
G.f.: x * (1 + 2*x + 9*x^2) / (1 - x - x^2 + x^3). - Michael Somos, Dec 06 2016
a(n) = a(n-1)+a(n-2)-a(n-3). - Wesley Ivan Hurt, May 03 2021
E.g.f.: 9 + (6*x - 7)*exp(x) - 2*exp(-x). - David Lovler, Sep 07 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(3)+1)*(2*Pi + 2*arccosh(26) - 4*sqrt(3)*arccoth(sqrt(3)) + 3*(sqrt(3)-1)*log(3))/48. - Amiram Eldar, Sep 26 2022
EXAMPLE
G.f. = x + 3*x^2 + 13*x^3 + 15*x^4 + 25*x^5 + 27*x^6 + 37*x^7 + 39*x^8 + ...
MATHEMATICA
Select[Range[300], MemberQ[{1, 3}, Mod[#, 12]]&] (* Ray Chandler, Dec 06 2016 *)
PROG
(PARI) {a(n) = 6*n - 9 + n%2*4}; /* Michael Somos, Dec 06 2016 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Oct 30 2008
EXTENSIONS
Formula and crossrefs corrected by Ray Chandler, Dec 06 2016
STATUS
approved