login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A146512 Numbers congruent to {1, 3} mod 12. 5
1, 3, 13, 15, 25, 27, 37, 39, 49, 51, 61, 63, 73, 75, 85, 87, 97, 99, 109, 111, 121, 123, 133, 135, 145, 147, 157, 159, 169, 171, 181, 183, 193, 195, 205, 207, 217, 219, 229, 231, 241, 243, 253, 255, 265, 267, 277, 279, 289, 291, 301, 303, 313, 315, 325, 327 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Positive integers k such that Hypergeometric[k/4,(4-k)/4,1/2,3/4] = 2Cos[Pi/6]

LINKS

Table of n, a(n) for n=1..56.

Index entries for linear recurrences with constant coefficients, signature (1,1,-1).

FORMULA

a(2k-1) = 12*(k-1)+1, a(2k) = 12*(k-1)+3, where k>0.

a(n) = 8*floor(n/2) + 2*n +1, with offset 0..a(0)= 1 a(n) = 6*n -1 + 2*(-1)^n, with offset 0..a(0)=1. [Gary Detlefs, Mar 13 2010]

a(n) = 12*n-a(n-1)-20 (with a(1)=1). [Vincenzo Librandi, Nov 26 2010]

G.f.: x * (1 + 2*x + 9*x^2) / (1 - x - x^2 + x^3). - Michael Somos, Dec 06 2016

EXAMPLE

G.f. = x + 3*x^2 + 13*x^3 + 15*x^4 + 25*x^5 + 27*x^6 + 37*x^7 + 39*x^8 + ...

MATHEMATICA

Select[Range[300], MemberQ[{1, 3}, Mod[#, 12]]&] (* Ray Chandler, Dec 06 2016 *)

PROG

(PARI) {a(n) = 6*n - 9 + n%2*4}; /* Michael Somos, Dec 06 2016 */

CROSSREFS

Cf. A146507, A146509, A146510, A146511.

Sequence in context: A045233 A113487 A032623 * A082704 A152270 A032919

Adjacent sequences:  A146509 A146510 A146511 * A146513 A146514 A146515

KEYWORD

nonn,easy

AUTHOR

Artur Jasinski, Oct 30 2008

EXTENSIONS

Formula and crossrefs corrected by Ray Chandler, Dec 06 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 22:34 EDT 2019. Contains 328335 sequences. (Running on oeis4.)