login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146507
Numbers congruent to {1, 13} mod 42.
4
1, 13, 43, 55, 85, 97, 127, 139, 169, 181, 211, 223, 253, 265, 295, 307, 337, 349, 379, 391, 421, 433, 463, 475, 505, 517, 547, 559, 589, 601, 631, 643, 673, 685, 715, 727, 757, 769, 799, 811, 841, 853, 883, 895, 925, 937, 967, 979
OFFSET
1,2
COMMENTS
Positive integers k such that Hypergeometric[k/14,(14-k)/14,1/2,3/4] = 2*cos(2Pi/7).
FORMULA
a(2k-1) = 42*(k-1)+1, a(2k) = 42*(k-1)+13, where k>0.
G.f.: x*(1 + 12*x + 29*x^2)/((1 - x)^2*(1 + x)). - Ilya Gutkovskiy, Dec 06 2016
E.g.f.: 29 + ((42*x - 49)*exp(x) - 9*exp(-x))/2. - David Lovler, Sep 10 2022
MATHEMATICA
Select[Range[1000], MemberQ[{1, 13}, Mod[#, 42]]&] (* Ray Chandler, Dec 06 2016 *)
LinearRecurrence[{1, 1, -1}, {1, 13, 43}, 50] (* Harvey P. Dale, Apr 15 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 30 2008
EXTENSIONS
Description, formula and crossrefs corrected by Ray Chandler, Dec 06 2016
STATUS
approved