login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers congruent to {1, 3} mod 12.
6

%I #39 Sep 26 2022 05:40:46

%S 1,3,13,15,25,27,37,39,49,51,61,63,73,75,85,87,97,99,109,111,121,123,

%T 133,135,145,147,157,159,169,171,181,183,193,195,205,207,217,219,229,

%U 231,241,243,253,255,265,267,277,279,289,291,301,303,313,315,325,327

%N Numbers congruent to {1, 3} mod 12.

%C Positive integers k such that Hypergeometric[k/4,(4-k)/4,1/2,3/4] = 2*cos(Pi/6).

%H David Lovler, <a href="/A146512/b146512.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F a(2k-1) = 12*(k-1)+1, a(2k) = 12*(k-1)+3, where k>0.

%F With offset 0, a(n) = 8*floor(n/2) + 2*n + 1, or a(n) = 6*n - 1 + 2*(-1)^n. - _Gary Detlefs_, Mar 13 2010

%F a(n) = 12*n-a(n-1)-20 (with a(1)=1). - _Vincenzo Librandi_, Nov 26 2010

%F G.f.: x * (1 + 2*x + 9*x^2) / (1 - x - x^2 + x^3). - _Michael Somos_, Dec 06 2016

%F a(n) = a(n-1)+a(n-2)-a(n-3). - _Wesley Ivan Hurt_, May 03 2021

%F E.g.f.: 9 + (6*x - 7)*exp(x) - 2*exp(-x). - _David Lovler_, Sep 07 2022

%F Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(3)+1)*(2*Pi + 2*arccosh(26) - 4*sqrt(3)*arccoth(sqrt(3)) + 3*(sqrt(3)-1)*log(3))/48. - _Amiram Eldar_, Sep 26 2022

%e G.f. = x + 3*x^2 + 13*x^3 + 15*x^4 + 25*x^5 + 27*x^6 + 37*x^7 + 39*x^8 + ...

%t Select[Range[300],MemberQ[{1,3},Mod[#,12]]&] (* _Ray Chandler_, Dec 06 2016 *)

%o (PARI) {a(n) = 6*n - 9 + n%2*4}; /* _Michael Somos_, Dec 06 2016 */

%Y Cf. A146507, A146509, A146510, A146511.

%K nonn,easy

%O 1,2

%A _Artur Jasinski_, Oct 30 2008

%E Formula and crossrefs corrected by _Ray Chandler_, Dec 06 2016