The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A082145 A subdiagonal of number array A082137. 5
 1, 5, 42, 336, 2640, 20592, 160160, 1244672, 9674496, 75246080, 585761792, 4564377600, 35602145280, 277970595840, 2172375244800, 16992801914880, 133035751833600, 1042374243778560, 8173537721057280, 64136851016908800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(n) = ( 2^(n-1) + (0^n)/2 )*binomial(2*n+3, n). (n+3)*a(n) +2*(-7*n-13)*a(n-1) +24*(2*n+1)*a(n-2)=0. - R. J. Mathar, Oct 29 2014 EXAMPLE a(0) = ( 2^(-1)+(0^0)/2 )*C(3,0) = ( 1/2+1/2 )*1 = 1 (use 0^0 = 1). - clarified by Jon Perry, Oct 29 2014 MAPLE Z:=(1-3*z-sqrt(1-4*z))/sqrt(1-4*z)/64: Zser:=series(Z, z=0, 32): seq(coeff(Zser*2^(n+1), z, n), n=4..23); # Zerinvary Lajos, Jan 01 2007 MATHEMATICA Join[{1}, Table[2^(n-1)* Binomial[2*n+3, n], {n, 1, 30}] (* G. C. Greubel, Feb 05 2018 *) PROG (MAGMA) [(2^(n-1)+(0^n)/2)*Binomial(2*n+3, n): n in [0..30]]; // Vincenzo Librandi, Oct 30 2014 (PARI) for(n=0, 30, print1((2^(n-1) + 0^n/2)*Binomial(2*n+3, n), ", ")) \\ G. C. Greubel, Feb 05 2018 CROSSREFS Cf. A069723, A082143, A082144. Sequence in context: A062021 A241780 A215785 * A126765 A228793 A330628 Adjacent sequences:  A082142 A082143 A082144 * A082146 A082147 A082148 KEYWORD nonn,easy AUTHOR Paul Barry, Apr 06 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 21:37 EDT 2020. Contains 334690 sequences. (Running on oeis4.)