login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082145
A subdiagonal of number array A082137.
5
1, 5, 42, 336, 2640, 20592, 160160, 1244672, 9674496, 75246080, 585761792, 4564377600, 35602145280, 277970595840, 2172375244800, 16992801914880, 133035751833600, 1042374243778560, 8173537721057280, 64136851016908800, 503613708419727360, 3956964851869286400
OFFSET
0,2
LINKS
FORMULA
a(n) = ( 2^(n-1) + (0^n)/2 )*binomial(2*n+3, n).
(n+3)*a(n) +2*(-7*n-13)*a(n-1) +24*(2*n+1)*a(n-2)=0. - R. J. Mathar, Oct 29 2014
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=0} 1/a(n) = 37/7 - 208*arcsin(1/(2*sqrt(2)))/(7*sqrt(7)).
Sum_{n>=0} (-1)^n/a(n) = 296*log(2)/27 - 61/9. (End)
EXAMPLE
a(0) = ( 2^(-1)+(0^0)/2 )*C(3,0) = ( 1/2+1/2 )*1 = 1 (use 0^0 = 1). - clarified by Jon Perry, Oct 29 2014
MAPLE
Z:=(1-3*z-sqrt(1-4*z))/sqrt(1-4*z)/64: Zser:=series(Z, z=0, 32): seq(coeff(Zser*2^(n+1), z, n), n=4..23); # Zerinvary Lajos, Jan 01 2007
MATHEMATICA
Join[{1}, Table[2^(n-1)* Binomial[2*n+3, n], {n, 1, 30}]] (* G. C. Greubel, Feb 05 2018 *)
PROG
(Magma) [(2^(n-1)+(0^n)/2)*Binomial(2*n+3, n): n in [0..30]]; // Vincenzo Librandi, Oct 30 2014
(PARI) for(n=0, 30, print1((2^(n-1) + 0^n/2)*Binomial(2*n+3, n), ", ")) \\ G. C. Greubel, Feb 05 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Apr 06 2003
STATUS
approved